Given that

, then

The slope of a tangent line in the polar coordinate is given by:

Thus, we have:

Part A:
For horizontal tangent lines, m = 0.
Thus, we have:

Therefore, the <span>values of θ on the polar curve r = θ, with 0 ≤ θ ≤ 2π, such that the tangent lines are horizontal are:
</span><span>θ = 0
</span>θ = <span>2.02875783811043
</span>
θ = <span>4.91318043943488
Part B:
For vertical tangent lines,

Thus, we have:

</span>Therefore, the <span>values of θ on the polar curve r = θ, with 0 ≤ θ ≤ 2π, such that the tangent lines are vertical are:
</span>θ = <span>4.91718592528713</span>
They aren't independent since the probability uses all the cards in the deck
So at the first deal we have the chance of 26/52 of getting a red card, at the second deal we have the chance of a 25/51 of getting another red card, so they aren't independent
Since you did not attach any picture we cannot say for sure what is the correct answer, but we can discuss the options in order to find the most probable correct answer.
First of all, according to the Cavalieri's principle, an oblique cylinder has the same volume as a right cylinder with the same base surface area and same height.
A cross-section of an oblique cylinder will be a small right cylinder with the same base surface area and a height as small as possible.
I guess the oblique cylinder has height h and it is divided into many (probably 10) cross-sections.
Option A: <span>πr2h
This is exactly the volume of the right cylinder, therefore, unless you are given a cross-section of height h (which would be too easy), this won't be the correct answer.
Option B: </span><span>4πr2h
This is 4 times the right cylinder. Again, here the height of the cross-section should</span> be 4h, but it doesn't sound like a possible data (too easy again).
Option C: <span>1 10 πr2h
Here comes a n issue with the notation: I think the right number you meant to write is (1/10)</span>·πr2h and not 110·<span>πr2h.
If I am right, this means that your oblique cylinder of height h is divided into 10 cross-sections, and therefore the volume of each of these cross-sections will be a tenth of the volume of the oblique cylinder, which means </span>1/10·<span>πr2h.
Option D: </span><span>1 2 πr2h
Here, we have the same notation issue as before. I think you meant (1/2)</span>·<span>πr2h.
Here, your oblique cylinder height h should be divided into only 2 cross-sections. Now, we said the cross-section's height should be the smallest as possible, so an oblique cylinder divided only into two pieces doesn't sound good.
Therefore, the most probable correct answer will be C) </span>(1/10)·<span>πr2h</span>
Answer:
There is a whole range of speeds at which you are allowed to drive, not just one. In cases like this where there is more than one correct answer, we use inequalities, not equations, to represent the situation.
Inequalities are mathematical statements that define a range of values. They are easily recognizable because they contain the symbols <, ≤,>, or ≥.
This is how I solved it.
2.5 multiplied by 3 is 7.5, which equals how many she takes a day.
Then I multiplied 7.5 by 10 = 75. I did that because the meds are taken for 10 days.
Also if you added 7.5 ten times is also 75.
So my final answer is that 75 tablets have been taken in total.