Answer:
<h3>Q cuts the diagonal PA into 2 equal halves, since the diagonals of rhombus meet at right angles.</h3><h3>The value of x is 8.</h3>
Step-by-step explanation:
Given that Quadrilateral CAMP below is a rhombus. the length PQ is (x+2) units, and the length of QA is (3x-14) units
From the given Q is the middle point, which cut the diagonal PA into 2 equal halves.
By the definition of rhombus, diagonals meet at right angles.
Implies that PQ = QA
x+2 = 3x - 14
x-3x=-14-2
-2x=-16
2x = 16
dividing by 2 on both sides, we will get,

<h3>∴ x=8</h3><h3>Since Q cuts the diagonal PA into 2 equal halves, since the diagonals of rhombus meet at right angles we can equate x+2 = 3x-14 to find the value of x.</h3>
The line segment 


( since x=8)


<h3>∴

units</h3>
Corresponding angles for parallel lines r and s cut by transversal q. Corresponding angles are congruent angles.
1 and 9
2 and 10
3 and 11
4 and 12
Corresponding angles for parallel lines p and q cut by transversal s. Corresponding angles are congruent angles.
11 and 15
9 and 13
12 and 16
10 and 14
Corresponding angles for parallel lines p and q cut by transversal r. Corresponding angles are congruent angles.
1 and 5
3 and 7
2 and 6
4 and 8
Linear pair theorem. These 2 angles are equal to 180°
∠1 + ∠2 = 180
∠3 + ∠4 = 180
∠9 + ∠10 = 180
∠11 + ∠12 = 180
∠5 + ∠6 = 180
∠7 + ∠8 = 180
∠13 + ∠14 = 180
∠15 + ∠16 = 180
∠1 + ∠3 = 180
∠2 + ∠4 = 180
∠9 + ∠11 =180
∠10 + ∠12 = 180
∠5 + ∠7 = 180
∠6 + ∠8 = 180
∠13 + ∠15 = 180
∠14 + ∠16 = 180
Vertical angles theorem. Vertical angles are congruent.
1 and 4
2 and 3
9 and 12
10 and 11
5 and 8
6 and 7
13 and 16
14 and 15
Multiple 5x70 to get 350. Which makes the equation 350=5x and then you have to divide both sides by 5 to get x by itself. so 5x/5 and 350/5 makes x=70
( - 45, 0)
to find the x-intercept let y = 0 in the equation
x = 0 →
x = - 15
multiply both sides by 3
x = 3 × - 15 = - 45
x-intercept = ( - 45, 0)