Answer:
30/552
Step-by-step explanation:
In order to solve this problem you need to multiply the probability of getting grape for the first gumball with the probability of getting grape for the second gumball. Since there are 6 grape gumballs and a total of 24 gumballs (6*4). Then the probability of getting grape for the firs one is
![\frac{6}{24}](https://tex.z-dn.net/?f=%5Cfrac%7B6%7D%7B24%7D)
Now there are only 5 grape gumballs available and one less in the total supply, therefore the probability of getting grape in the second try is
![\frac{5}{23}](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B23%7D)
Finally we multiply them together to find the probability of getting two grapes in a row.
= ![\frac{30}{552}](https://tex.z-dn.net/?f=%5Cfrac%7B30%7D%7B552%7D)
0.05 is the answer for your question.
Sqrt of 3......................................
Answer:
It is an identity, proved below.
Step-by-step explanation:
I assume you want to prove the identity. There are several ways to prove the identity but here I will prove using one of method.
First, we have to know what cot and cosec are. They both are the reciprocal of sin (cosec) and tan (cot).
![\displaystyle \large{\cot x=\frac{1}{\tan x}}\\\displaystyle \large{\csc x=\frac{1}{\sin x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clarge%7B%5Ccot%20x%3D%5Cfrac%7B1%7D%7B%5Ctan%20x%7D%7D%5C%5C%5Cdisplaystyle%20%5Clarge%7B%5Ccsc%20x%3D%5Cfrac%7B1%7D%7B%5Csin%20x%7D%7D)
csc is mostly written which is cosec, first we have to write in 1/tan and 1/sin form.
![\displaystyle \large{1+(\frac{1}{\tan x})^2=(\frac{1}{\sin x})^2}\\\displaystyle \large{1+\frac{1}{\tan^2x}=\frac{1}{\sin^2x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clarge%7B1%2B%28%5Cfrac%7B1%7D%7B%5Ctan%20x%7D%29%5E2%3D%28%5Cfrac%7B1%7D%7B%5Csin%20x%7D%29%5E2%7D%5C%5C%5Cdisplaystyle%20%5Clarge%7B1%2B%5Cfrac%7B1%7D%7B%5Ctan%5E2x%7D%3D%5Cfrac%7B1%7D%7B%5Csin%5E2x%7D%7D)
Another identity is:
![\displaystyle \large{\tan x=\frac{\sin x}{\cos x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clarge%7B%5Ctan%20x%3D%5Cfrac%7B%5Csin%20x%7D%7B%5Ccos%20x%7D%7D)
Therefore:
![\displaystyle \large{1+\frac{1}{(\frac{\sin x}{\cos x})^2}=\frac{1}{\sin^2x}}\\\displaystyle \large{1+\frac{1}{\frac{\sin^2x}{\cos^2x}}=\frac{1}{\sin^2x}}\\\displaystyle \large{1+\frac{\cos^2x}{\sin^2x}=\frac{1}{\sin^2x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clarge%7B1%2B%5Cfrac%7B1%7D%7B%28%5Cfrac%7B%5Csin%20x%7D%7B%5Ccos%20x%7D%29%5E2%7D%3D%5Cfrac%7B1%7D%7B%5Csin%5E2x%7D%7D%5C%5C%5Cdisplaystyle%20%5Clarge%7B1%2B%5Cfrac%7B1%7D%7B%5Cfrac%7B%5Csin%5E2x%7D%7B%5Ccos%5E2x%7D%7D%3D%5Cfrac%7B1%7D%7B%5Csin%5E2x%7D%7D%5C%5C%5Cdisplaystyle%20%5Clarge%7B1%2B%5Cfrac%7B%5Ccos%5E2x%7D%7B%5Csin%5E2x%7D%3D%5Cfrac%7B1%7D%7B%5Csin%5E2x%7D%7D)
Now this is easier to prove because of same denominator, next step is to multiply 1 by sin^2x with denominator and numerator.
![\displaystyle \large{\frac{\sin^2x}{\sin^2x}+\frac{\cos^2x}{\sin^2x}=\frac{1}{\sin^2x}}\\\displaystyle \large{\frac{\sin^2x+\cos^2x}{\sin^2x}=\frac{1}{\sin^2x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clarge%7B%5Cfrac%7B%5Csin%5E2x%7D%7B%5Csin%5E2x%7D%2B%5Cfrac%7B%5Ccos%5E2x%7D%7B%5Csin%5E2x%7D%3D%5Cfrac%7B1%7D%7B%5Csin%5E2x%7D%7D%5C%5C%5Cdisplaystyle%20%5Clarge%7B%5Cfrac%7B%5Csin%5E2x%2B%5Ccos%5E2x%7D%7B%5Csin%5E2x%7D%3D%5Cfrac%7B1%7D%7B%5Csin%5E2x%7D)
Another identity:
![\displaystyle \large{\sin^2x+\cos^2x=1}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clarge%7B%5Csin%5E2x%2B%5Ccos%5E2x%3D1%7D)
Therefore:
![\displaystyle \large{\frac{\sin^2x+\cos^2x}{\sin^2x}=\frac{1}{\sin^2x}\longrightarrow \boxed{ \frac{1}{\sin^2x}={\frac{1}{\sin^2x}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clarge%7B%5Cfrac%7B%5Csin%5E2x%2B%5Ccos%5E2x%7D%7B%5Csin%5E2x%7D%3D%5Cfrac%7B1%7D%7B%5Csin%5E2x%7D%5Clongrightarrow%20%5Cboxed%7B%20%5Cfrac%7B1%7D%7B%5Csin%5E2x%7D%3D%7B%5Cfrac%7B1%7D%7B%5Csin%5E2x%7D%7D%7D)
Hence proved, this is proof by using identity helping to find the specific identity.
Answer:
D
Step-by-step explanation: