Answer:
The pressure inside the container would increase with each additional pump.
Explanation:
- From the general gas law of ideal gases:
<em>PV = nRT,</em>
where, P is the pressure of the gas.
V is the volume of the gas.
n is the no. of moles of the gas.
R is the general gas constant.
T is the temperature of the gas.
- As clear from the gas law; the pressure of the gas is directly proportional to the no. of moles of the gas.
<em>P α n.</em>
- As gas particles are pumped into a rigid steel container, the no. of moles of the gas will increase.
So, the pressure of the gas will increase.
<em>Thus, the right choice is: The pressure inside the container would increase with each additional pump.</em>
Answer:
the answer rounded to the nearest hundredth is 0.63
Explanation:
Answer:
D) the carbon with the low-energy phosphate on it in 1,3 BPG is labeled.
Explanation:
Glycolysis has 2 phase (1) preparatory phase (2) pay-off phase.
<u>(1) Preparatory phase</u>
During preparatory phase glucose is converted into fructose-1,6-bisphosphate. Till this time the carbon numbering remains the same i.e. if we will label carbon at 6th position of glucose, its position will remian the same in fructose-1,6-bisphosphate that means the labeled carbon will still remain at 6th position.
When fructose-1,6-bisphosphate is further catalyzed with the help of enzyme aldolase it is cleaved into two 3 carbon intermediates which are glyceraldehyde 3-phosphate (GAP) and dihyroxyacetone phosphate (DHAP). In this conversion, the first three carbons of fructose-1,6-bisphosphate become carbons of DHAP while the last three carbons of fructose-1,6-bisphosphate will become carbons of GAP. It simply means that GAP will acquire the last carbon of fructose-1,6-bisphosphate which is labeled. Now the last carbon of GAP which has phosphate will be labeled.
<u>(2) Pay-off phase</u>
During this phase, GAP is dehydrogenated into 1,3-bisphosphoglycerate (BPG) with the help of enzyme glyceraldehyde 3-phosphate dehydrogenase. This oxidation is coupled to phosphorylation of C1 of GAP and this is the reason why 1,3-bisphosphoglycerate has phosphates at 2 positions i.e. at position 1 in which phosphate is newly added and position 3rd which already had labeled carbon.
It is pertinent to mention here that<u> BPG has a mixed anhydride and the bond at C1 is a very high energy bond.</u> In the next step, this high energy bond is hydrolyzed into a carboxylic acid with the help of enzyme phosphoglycerate kinase and the final product is 3-phosphoglycerate. Hence, the carbon with low energy phosphate i.e. the carbon at 3rd position remains labeled.
A sample 0. 100 moles of a gas is collected at at STP . 2.24 is the volume of the gas in liters.
The STP means standard temperature and pressure.
At STP,
Temperature = 0 °C =273 K
Pressure = 1 atm
We get value of volume by using ideal gas equation,
PV = nRT
- P is the pressure of the gas = 1 atm
- V is the volume occupied by the gas = ?
- n is the number of the moles = 1 mole
- T is the temperature of the gas = 273 K or 0 °C
- R universal gas constant = 8.31 J/ mole × K
Calculation,
Since, one mole of a gas occupy 22.4 L volume at STP
So, for 0.1 mole volume occupy = 22.4L × 0.1 mole/1 mole = 2.24L
To learn more about volume at STP,
brainly.com/question/1542685
#SPJ4
El arsénico puede provocar cáncer en pulmón y piel, e inclusive puede causar otros tipos de cánceres. Se observa una mayor fuerza de asociación entre la exposición crónica al arsénico y los cánceres de piel,El arsénico es un elemento químico de la tabla periódica que pertenece al grupo de los metaloides, también llamados semimetales, se puede encontrar de diversas formas, aunque raramente se encuentra en estado sólido. Se conoce desde la antigüedad y se reconoce como extremadamente tóxi ve
Símbolo: As
Configuración electrónica: [Ar] 3d104s24p3
Masa atómica: 74.9216 u ± 0.00002 u
Número atómico: 33
Electrones por nivel: 2, 8, 18, 5 (imagen)
Grupo, período, bloque: 15, 4, p.