Answer:
280 g Al₂O₃
Explanation:
To find the mass, you need to multiply the given value by the molar mass. This will cause the conversion because the molar mass exists as a ratio; technically, the ratio states that there are 101.96 grams per every 1 mole Al₂O₃. It is important to arrange the ratio in a way that allows for the cancellation of units. In this case, the desired unit (grams) should be in the numerator. The final answer should have 2 sig figs to reflect the given value (2.7 mol).
Molar Mass (Al₂O₃): 101.96 g/mol
2.7 moles Al₂O₃ 101.96 g
------------------------ x ------------------- = 275 g Al₂O₃ = 280 g Al₂O₃
1 mole
First, we need to be aware that our blood is also a form of liquid.
So, when the astronaut is placed in within the environment that has decreased pressure, the temperature inside the astronaut's body will definitely increase but it won't cause the boiling effect like in water (it won't even break the arteries). But it could endanger the astronaut's life because it makes the blood unable to circulate properly due to unstable blood pressure
Answer:
When you pull a rubber band there is elastic potential energy stored in the rubber band but once you let go of either side the EPE turns into Kinetic Energy.
Protons are positive
Neutrons are neutral
Electrons are negatively charged