1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Eddi Din [679]
3 years ago
7

Choose Yes Or No To Tell if the fraction 4/9 will make each equation True.

Mathematics
1 answer:
BlackZzzverrR [31]3 years ago
5 0

Answer:

true, true, false, true

Step-by-step explanation:

(4/9)*63=28

(4/9)*18=8

(4/9)*96=42.666667

(4/9)*36=16

You might be interested in
A plane travels 572.5 miles every hour. How far does the plane travel in 0.6 hour? HELP PLEASE IM DESPRATE!
Kitty [74]
The formula for distance problems is: distance = rate × time or d = r × t

Things to watch out for:
Make sure that you change the units when necessary. For example, if the rate is given in miles per hour and the time is given in minutes then change the units appropriately.
It would be helpful to use a table to organize the information for distance problems. A table helps you to think about one number at a time instead being confused by the question.

The following diagrams give the steps to solve Distance-Rate-Time Problems. Scroll down the page for examples and solutions. We will show you how to solve distance problems by the following examples:
Traveling At Different Rates
Traveling In Different Directions
Given Total Time
Wind and Current Problems.
4 0
2 years ago
The system of equations shown below is graphed on a coordinate grid:
Rufina [12.5K]

Answer:

4x 3 - 6 4 is the answer

Step-by-step explanation:

i took the test in flvs

4 0
3 years ago
Which linear function has the same y-intercept as the one that is represented by the graph? On a coordinate plane, a line goes t
Zolol [24]

The line which is having same y intercept as the line which passes through points (-4,0) and (0,3) is y=2x+3.

Given Points through which the line passes through are (-4,0) and (0,3)

We have to find the equation whose y intercept is equal to the y intercept of the line whose points given above.

First of all we have to find the y intercept of the line which passes through (-4,0) and (0,3). Equation of line is :

y-y1=(y2-y1)/(x2-x1)*(x-x1)

y-0=(3-0)/(0+4)  *(x+4)

y=3/4(x+4)

y -intercept exists where x=0

put x=0

y=3

So the options are:

  • y=2x-4
  • y=2x-3
  • y=2x+3
  • y=2x+4

By putting the value of x in all options we will find

y=-4

y=-3

y=3

y=4

So the third option is correct.

Hence the line whose y-intercept matched with the given line is y=2x+3.

Learn more about line at brainly.com/question/13763238

#SPJ10

5 0
2 years ago
What is the slope of a line perpendicular to the line:<br><br> y = -2/3x + 5
Rus_ich [418]

1.5

Opposite reciprocal of -2/3

5 0
3 years ago
The graph h = −16t^2 + 25t + 5 models the height and time of a ball that was thrown off of a building where h is the height in f
Thepotemich [5.8K]

Answer:

part 1) 0.78 seconds

part 2) 1.74 seconds

Step-by-step explanation:

step 1

At about what time did the ball reach the maximum?

Let

h ----> the height of a ball in feet

t ---> the time in seconds

we have

h(t)=-16t^{2}+25t+5

This is a vertical parabola open downward (the leading coefficient is negative)

The vertex represent a maximum

so

The x-coordinate of the vertex represent the time when the ball reach the maximum

Find the vertex

Convert the equation in vertex form

Factor -16

h(t)=-16(t^{2}-\frac{25}{16}t)+5

Complete the square

h(t)=-16(t^{2}-\frac{25}{16}t+\frac{625}{1,024})+5+\frac{625}{64}

h(t)=-16(t^{2}-\frac{25}{16}t+\frac{625}{1,024})+\frac{945}{64}\\h(t)=-16(t^{2}-\frac{25}{16}t+\frac{625}{1,024})+\frac{945}{64}

Rewrite as perfect squares

h(t)=-16(t-\frac{25}{32})^{2}+\frac{945}{64}

The vertex is the point (\frac{25}{32},\frac{945}{64})

therefore

The time when the ball reach the maximum is 25/32 sec or 0.78 sec

step 2

At about what time did the ball reach the minimum?

we know that

The ball reach the minimum when the the ball reach the ground (h=0)

For h=0

0=-16(t-\frac{25}{32})^{2}+\frac{945}{64}

16(t-\frac{25}{32})^{2}=\frac{945}{64}

(t-\frac{25}{32})^{2}=\frac{945}{1,024}

square root both sides

(t-\frac{25}{32})=\pm\frac{\sqrt{945}}{32}

t=\pm\frac{\sqrt{945}}{32}+\frac{25}{32}

the positive value is

t=\frac{\sqrt{945}}{32}+\frac{25}{32}=1.74\ sec

8 0
3 years ago
Other questions:
  • 7 - 3 ( 5t - 10 ) = 67
    6·2 answers
  • Determine the interval on which f(x) = ln(x) is integrable.
    7·2 answers
  • Enrollment in a dance studio has grown exponentially since the studio opened. A graph depicting this growth is shown. Determine
    13·1 answer
  • Three friends decide that they each want to be able to buy a new boat in five years. Vanore puts $1,000 in a savings account wit
    15·2 answers
  • They want us toSolve for x
    14·2 answers
  • Which is greater 4/5 or 3/4? Explain how you know
    11·1 answer
  • A package of six construction toys costs $14.94, not including tax. If purchased separately, each truck is $2.99, not including
    12·2 answers
  • PLEASE HELP! Yes or no answer on the graph
    15·2 answers
  • A round-robin tennis tournament consists of each player playing every other player exactly once. How many matches will be held d
    15·1 answer
  • To drive safely along a road, drivers need to maintain a speed of at least 50 miles per hour and at most 60 miles per hour. Writ
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!