Answer:
$30
Step-by-step explanation:
30 % + 10 % = 40 %
40 % of $50 = $20
%50 - $20 = $30
To check which ordered pair (point) is in the solution set of the system of given linear inequalities y>x, y<x+1; we just need to plug given points into both inequalities and check if that point satisfies both inequalities or not. If any point satisfies both inequalities then that point will be in solution.
I will show you calculation for (5,-2)
plug into y>x
-2>5
which is clearly false.
plug into y<x+1
-2<5+1
or -2<6
which is also false.
hence (5,-2) is not in the solution.
Same way if you test all the given points then you will find that none of the given points are satisfying both inequalities.
Hence answer will be "No Solution from given choices".
Answer:
x = -3 and x = -3/2
Step-by-step explanation:
After writing down the polynomial, split it; put a line between 3x^2 and -18x. Look and 2x^3 + 3x^2 and -18x - 27 separately and factor them both:
p(x) = 2x^3 + 3x^2 <u>- 18x -27</u>
p(x) = x^2(2x+3) <u>-9(2x+3)</u>
Now notice how x^2 and -9 have the same factor (2x+3). That means x^2 and -9 can go together:
p(x) = (x^2 - 9)(2x+3)
Factor it once more because there's a difference of squares:
p(x) = (x+3)(x-3)(2x+3)
Now just plug in whatever makes the each bracket equal 0:
x = -3, x = 3, and x = -3/2
Those are your zeros.