Answer:

this is the equation of the tangent at point (-1,1/e)
Step-by-step explanation:
to find the tangent line we need to find the derivative of the function g(x).

- we know that



this the equation of the slope of the curve at any point x and it also the slope of the tangent at any point x. hence, g'(x) can be denoted as 'm'
to find the slope at (-1,1/e) we'll use the x-coordinate of the point i.e. x = -1

using the equation of line:

we'll find the equation of the tangent line.
here (x1,y1) =(-1,1/e), and m = 3/e


this is the equation of the tangent at point (-1,1/e)
Answer:
the answer is 50
Step-by-step explanation:
first you plug in the x and y in the equation, making it 6(7)=-4(-2) then, you multiply the numbers together, making the equation 42+8. finally, you add those numbers together, giving you the answer 50
Annually The amount after 10 years = $ 7247.295
quarterly compound after 10 years = $7393.5
Continuously interest =$7,419
Given:
P = the principal amount
r = rate of interest
t = time in years
n = number of times the amount is compounding.
Principal = $4500
time= 10 year
Rate = 5%
To find: The amount after 10 years.
The principal amount is, P = $4500
The rate of interest is, r = 5% =5/100 = 0.05.
The time in years is, t = 10.
Using the quarterly compound interest formula:
A = P (1 + r / 4)4 t
A= 4500(1+.05/4)40
A= 4500(4.05/4)40
A= 4500(1.643)
Answer: The amount after 10 years = $7393.5
Using the Annually compound interest formula:
A = P (1 + r / 100) t
A= 4500(1+5/100)10
A= 4500(105/100)10
Answer: The amount after 10 years = $ 7247.295
Using the Continuously compound interest formula:
e stands for Napier’s number, which is approximately 2.7183

A= $2,919
Answer: The amount after 10 years = $4500+$2,919=$7,419
More details :brainly.com/question/13307568
#SPJ9