1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
castortr0y [4]
3 years ago
8

A random sample of size 16 is to be taken from a normal population having mean of 100 andvariance 4. What is the 90th percentile

of the distribution of x?
Mathematics
1 answer:
viva [34]3 years ago
3 0

Answer:  100+1.28(1/2)=100.64

Step-by-step explanation:

A random sample of size 16 is to be taken from a normal population having mean 100 and variance 4. ... The 90th percentile of the normal curve, according to the table I was provided, was equal to 1.28 standard units above the mean.

You might be interested in
Help ASAP..........................
serious [3.7K]

Answer:

32

Step-by-step explanation:

5*5=25

25+7=32

Hope you have a great day :)

4 0
3 years ago
Which expression can be used to fine the slope of a line containing the points (-3,2) and (7,-1)
Charra [1.4K]

Hello there! you can use the expression \frac{ y_{1}-y_{2}}{x_{1}-x_{2} }!

To find slope, subtract the y values over the x values.

In this case:

2 - - 1 / - 3 - 7

3 / -10

So, -3/10 would be the slope of these points.

Hope this helps, have a great day!

7 0
4 years ago
Cual es el triple de ocho
garri49 [273]
Veinte y quatro veinte y quatro
6 0
4 years ago
Read 2 more answers
The indicated function y1(x) is a solution of the associated homogeneous equation. Use the method of reduction of order to find
9966 [12]

Answer:

<em>The particular integral of given differential equation</em>

<em>                  </em>y_{p} = \frac{1}{4} ( x - (\frac{-5}{4} ) (1))<em></em>

<em> General solution of given differential equation</em>

<em>      </em>y = y_{c} + y_{p}<em></em>

<em>  </em>Y (x) = C_{1} e^{x} + C_{2} e^{4x} + \frac{1}{4} ( x + (\frac{5}{4} ))<em></em>

<em></em>

Step-by-step explanation:

<u><em>Step(i)</em></u>:-

Given Differential equation  y'' − 5 y' + 4 y = x

Given equation in operator form

        D²y - 5 Dy +  4 y = x

⇒     ( D² - 5 D +  4 ) y =x

⇒    f(D) y = Q

where  f(D) = D² - 5 D +  4 and Q(x) = x

<em>The auxiliary equation  f(m) =0</em>

<em>           m²-5 m + 4 =0</em>

         m² - 4 m - m + 4 =0

        m ( m -4 ) -1 ( m-4) =0

         (m - 1) =0   and ( m-4) =0

        <em> m = 1 and m =4</em>

<em>The complementary function </em>

<em></em>Y_{c} = C_{1} e^{x} + C_{2} e^{4x}<em></em>

<u><em>Step(ii)</em></u>:-

<u><em>particular integral</em></u>

<em>Particular integral</em>

<em>     </em>y_{p} = \frac{1}{f(D)} Q(x) = \frac{1}{D^{2}  - 5 D +  4} X<em></em>

<em>taking common '4' </em>

<em>                          </em>= \frac{1}{4(1 +  (\frac{D^{2}  - 5 D}{4} ))} X<em></em>

<em>                         </em>

<em>                           </em>=\frac{1}{4}  (1 + (\frac{D^{2} -5D}{4})^{-1} )} X<em></em>

<em>applying binomial expression</em>

<em>      ( 1 + x )⁻¹    = 1 - x + x² - x³ +.....       </em>

<em>                          </em>=\frac{1}{4}  (1 - (\frac{D^{2} -5D}{4}) +((\frac{D^{2} -5D}{4})^{2} -...} )X<em></em>

<em>Now simplifying and we will use notation D = </em>\frac{dy}{dx}<em></em>

<em>                        </em>=\frac{1}{4}  (x - (\frac{D^{2} -5D}{4})x +((\frac{D^{2} -5D}{4})^{2}(x) -...}<em></em>

<em>Higher degree terms are neglected</em>

<em>                     </em>=\frac{1}{4}  (x - (\frac{ -5 D}{4}) x)<em></em>

<em>The particular integral of given differential equation</em>

<em>                  </em>y_{p} = \frac{1}{4} ( x - (\frac{-5}{4} ) (1))<em></em>

<u><em>Final answer</em></u><em>:-</em>

<em>          General solution of given differential equation</em>

<em>      </em>y = y_{c} + y_{p}<em></em>

<em>  </em>Y (x) = C_{1} e^{x} + C_{2} e^{4x} + \frac{1}{4} ( x + (\frac{5}{4} ))<em></em>

<em></em>

<em></em>

<em>         </em>

<em> </em>

     

4 0
3 years ago
Pedro has determined that the probability his shot will score in a lacrosse game is 0.30. What is the probability that he will s
antiseptic1488 [7]
That would be 0.30 * 0.30  = 0.09 Answer
4 0
3 years ago
Read 2 more answers
Other questions:
  • If a laptop originally costs $800, the balance due after the 10% discount and $150 gift card is applied is $
    9·2 answers
  • 2.6×3 1/3<br> round answer to 3 decimal places
    6·1 answer
  • Simplify 3^2 ⋅ 3^5 pls help (25 points)<br><br> a) 3^7 <br><br>b) 3^10<br><br>c)9^7<br><br>d)9^10
    12·1 answer
  • Using the information above regarding the proportion of agenda-less meetings, choose the correct conclusion for this hypothesis
    7·1 answer
  • Can someone please help me solve this?
    13·1 answer
  • Eva and her children went into a restaurant and where they sell
    8·1 answer
  • What is the constant of proportionality?
    14·2 answers
  • 4 trumpet players, 5 saxophone players, 2 keyboard players. What is the probability that no keyboard players are chosen in a ran
    14·2 answers
  • Answer this please<br> Question in the image below
    13·1 answer
  • Pleaseee i need helpp xx
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!