Answer:
The entire cart/hanging mass system follows the same law, ΣF = ma. This means that plotting force vs. acceleration yields a linear relationship (of the form y = mx).
The component of the force in negative z-direction is -0.144 N.
The given parameters;
- <em>current in the wire, I = 2.7 A</em>
- <em>length of the wire, L = (3.2 i + 4.3j) cm</em>
- <em>magnetic filed, B = 1.24 i</em>
The force on the segment of the wire is calculated as follows;

where;
- <em>θ is the angle wire and magnetic field</em>
<em />
The force on the wire segment will be perpendicular in negative z-direction (applying right hand rule), so there won't be any x and y component of the force.
The angle between the wire and the magnetic field is calculated as follows;

The magnitude of the wire length is calculated as follows;

The component of the force in negative z-direction is calculated as;

Thus, the component of the force in negative z-direction is -0.144 N.
Learn more here:brainly.com/question/22719779
Answer:
Engular velocity: 
Linear velocity: 
The time it takes:

Explanation:
The magnitude of the centripetal acceleration can be related to the angular velocity and radius as:
(1)
Solving for w:
(2)
Replacing a=9,8m/s2 and r=6,375,000m:
(3)
And the angular velocity relates to the linear velocity:

The perimeter of the orbit is:

The time it takes:

Answer:
Explanation:
Ionization Energy Trends
Ionization energy is the energy required to remove an electron from a neutral atom in its gaseous phase. Conceptually, ionization energy is the opposite of electronegativity. ... As a result, it is easier for valence shell electrons to ionize, and thus the ionization energy decreases down a group