A geologist is studying rock layers in an old river bed, and he finds a fossil of a fish and a horsetail rush in the same rock layer. According to the law of faunal and floral succession, the geologist can assume that the rock containing the fossils may date back as far as the <span>Devonian period</span>.
Your mass will never change despite if you go to Jupiter, Uranus, Mars, Earth, or any planet.
Answer:
a = 120 m/s²
Explanation:
We apply Newton's second law in the x direction:
∑Fₓ = m*a Formula (1)
Known data
Where:
∑Fₓ: Algebraic sum of forces in the x direction
F: Force in Newtons (N)
m: mass (kg)
a: acceleration of the block (m/s²)
F = 1200N
m = 10 kg
Problem development
We replace the known data in formula (1)
1200 = 10*a
a = 1200/10
a = 120 m/s²
Answer:
False
Explanation:
As we know that, the Balmer series gives the n values as,
.
.
Now the value of wavelength can be calculated as,
.
Here,
.
And
.
Now,
.
Therefore,

Therefore, the wavelength of Balmer series lies in visible region which is 547 nm.

- P is power
- R is resistance

Hence


- Therefore if power is low then resistance will be high.
The first bulb has less power hence it has greater filament resistance.