A change in an object's speed has a(n) _________ effect on its kinetic energy than a change in its mass = <span>A greater effect.</span>
Answer:
a = - 50 [m/s²]
Explanation:
To solve this problem we simply have to replace the values supplied in the given equation.
Vf = final velocity = 0.5 [m/s]
Vi = initial velocity = 10 [m/s]
s = distance = 100 [m]
a = acceleration [m/s²]
Now replacing we have:
![(0.5)^{2}-(10)^{2} = 2*a*(100)\\0.25-10000=200*a\\200*a=-9999.75\\a =-50 [m/s^{2} ]](https://tex.z-dn.net/?f=%280.5%29%5E%7B2%7D-%2810%29%5E%7B2%7D%20%3D%202%2Aa%2A%28100%29%5C%5C0.25-10000%3D200%2Aa%5C%5C200%2Aa%3D-9999.75%5C%5Ca%20%3D-50%20%5Bm%2Fs%5E%7B2%7D%20%5D)
The negative sign of acceleration means that the ship slows down its velocity in order to land.
Answer:
Action and reaction are equal but act in opposite directions
Answer:
For the first one its about 25 feet
Explanation:
Answer:
mu = 0.56
Explanation:
The friction force is calculated by taking into account the deceleration of the car in 25m. This can be calculated by using the following formula:

v: final speed = 0m/s (the car stops)
v_o: initial speed in the interval of interest = 60km/h
= 60(1000m)/(3600s) = 16.66m/s
x: distance = 25m
BY doing a the subject of the formula and replace the values of v, v_o and x you obtain:

with this value of a you calculate the friction force that makes this deceleration over the car. By using the Newton second's Law you obtain:

Furthermore, you use the relation between the friction force and the friction coefficient:

hence, the friction coefficient is 0.56