Visible light waves are the only electromagnetic waves we can see has the longest wavelength
<h2>
Person must have 8.18 m/s to catch the ball</h2>
Explanation:
Consider the vertical motion of ball
We have equation of motion s = ut + 0.5at²
Initial velocity, u = 12 m/s
Acceleration, a = -9.81 m/s²
Displacement, s = -25 m
Substituting
-25 = 12 x t + 0.5 x -9.81 x t²
4.905 t² -12t - 25 = 0
t = 3.79 sec
Ball hits ground after 3.79 seconds.
So person need to cover 31 m in 3.79 seconds
Consider the horizontal motion of person
We have equation of motion s = ut + 0.5at²
Initial velocity, u = ?
Acceleration, a = 0 m/s²
Displacement, s = 31 m
Time, t = 3.79 seconds
Substituting
31 = u x 3.79 + 0.5 x 0 x 3.71²
u = 8.18 m/s
Person must have 8.18 m/s to catch the ball
Answer:
39.240 W
Explanation:
Let's start by calculating the work done by the engine. We can assume that it is the same work done by the weight of the object to bring it from 40m to the surface: as much energy it takes to bring it up, the same ammount it takes to bring it down. Said work is 
At this point we can simply apply the definition of power, that is
, to get the power of the engine is 
Answer:
c. dioptre that's the answer.