Answer:
The energy of attraction between the cation and anion is 1.231 X 10⁻¹¹ J
Explanation:
Let the charge on the cation be q₁
Also let the charge on the anion be q₂
A cation q₁ with a valence of 1, has a charge of 1 X 1.602×10⁻¹⁹C = 1.602×10⁻¹⁹C
An anion q₂ with a valence of 3, has a charge of 3 X 1.602×10⁻¹⁹C = 4.806 ×10⁻¹⁹C
The distance between the two charges is 7.5nm = 7.5 X10⁻⁹m
Energy of attraction = 
Where k is coulomb's constant = 8.99 X 10⁹ Nm₂/C₂
Energy of attraction = 
Energy of attraction = 1.231 X 10⁻¹¹ J
Therefore, the energy of attraction between the cation and anion is 1.231 X 10⁻¹¹ J
Fire Burning is the correct answer
Answer:
Explanation:
The branch of physical chemistry that is concerned with understanding the rates of chemical reactions is called Kenetics.
Answer: The equilibrium concentration of
at 700 degrees Celsius is 0.0012 M
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
Moles of
= 0.29 mole
Volume of solution = 3.0 L
Initial concentration of
= 
The given balanced equilibrium reaction is,

Initial conc. 0.097 M 0M 0M
At eqm. conc. (0.097-2x) M (2x) M (x) M
The expression for
is written as:
![K_c=\frac{[H_2]^2\times [S_2]}{[H_2S]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5D%5E2%5Ctimes%20%5BS_2%5D%7D%7B%5BH_2S%5D%5E2%7D)



Equilibrium concentration of
= 2x= 
Answer:
Iron(II) sulfate
Explanation:
Chemical equation of formation of FeSO₄:
Fe + H₂SO₄ → FeSO₄ + H₂
The name of FeSO₄ is Iron(II) sulfate.
It is also called ferrous sulfate.
It is blue green crystalline solid.
It is odorless.
It is inorganic salt.
Its atomic mass is 151.908 g/mol.
Its density is 1.898 g/ml.
This salt is soluble in water.
The melting point of anhydrous ferrous sulfate is 680°C.
It is used in medicine in treatment of anemia.