To determine the fraction of carbon in morphine, we need to know the chemical formula of morphine. From my readings, the chemical formula would be <span>C17H19NO<span>3. We assume we have 1 g of this substance. Using the molar mass, we can calculate for the moles of morphine. Then, from the formula we relate the amount of carbon in every mole of morphine. Lastly, we multiply the molar mass of carbon to obtain the mass of carbon. We calculate as follows:
1 g </span></span> <span>C17H19NO<span>3 ( 1 mol / 285.34 g ) ( 17 mol C / 1 mol </span></span> <span>C17H19NO3</span>) ( 12.01 g C / 1 mol C) = 0.7155 g C
Fraction of carbon = 0.7155 g C / 1 g <span>C17H19NO<span>3 = 0.7155</span></span>
Answer:
other the effect of temperature on plants
When an ionic is placed in water a dissolving reaction occurs so the positive or negative ion are only attracted to each other
The circulatory system picks up nitrogenous wastes from the cells and delivers them to the kidneys. The kidneys remove these wastes from the blood and concentrates them into the urine that is eliminated from the body.
<em>hey, im jordan :)</em>
the SI unit for the mass of subatomic particles is <u>amu (atomic mass unit)</u>
<em>hope this helps!</em>
<em>have a great day :D</em>