Answer:
c = 0.25 j/g.°C
Explanation:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Given data:
Mass of metal = 50.0 g
Heat needed = 314 j
Initial temperature = 25°C
Final temperature = 50 °C
Specific heat = ?
Solution:
ΔT = 50 °C - 25°C = 25°C
Q = m.c. ΔT
c = Q / m. ΔT
c = 314 j / 50.0 g . 25°C
c = 314 j / 1250 g. °C
c = 0.25 j/g.°C
Answer:Earth science or geoscience includes all fields of natural science related to planet Earth. This is a branch of science dealing with the physical and chemical constitution of Earth and its atmosphere. Earth science can be considered to be a branch of planetary science, but with a much older history.
Explanation: hope it helps
Answer:
= 2.64 × 10^7 m
Explanation:
Energy is given by the formula;
E = hc/λ
Where h is Planck’s constant (= 6.626 x 10^-34 Js), c is the speed of light (3.00 x 108 m/s) and λ is the wavelength in meters.
Therefore, wavelength will be given by;
λ = hc/E
= (6.626× 10^-34 × 3 × 10^8)/(7.53 × 10^-32)
<u> = 2.64 × 10^7 m</u>
To be able to determine the number of moles that a certain number of molecules comprises, we simply divide the number of molecules by the Avogadro's number which is equal to 6.022 x 10^23.
n = M/A
where n is the number of moles, M is the number of molecules, and A is Avogadro's number. Substituting the known values,
n = (4.15 x 10^23 molecules)/(6.022 x 10^23 molecules/mol)
Simplifying,
n = 0.689 moles
<em>Answer: 0.689 moles</em>