4. However, you can do this in a Calculator.
 
        
                    
             
        
        
        
1:2. Two hexagons fit in a hexagon.
        
             
        
        
        
Answer:2500mcg would be 2.5mg
Step-by-step explanation:
1000mcg = 1mg so 2500mcg = 2.5mg
 
        
             
        
        
        
No is your answer
Assuming that b ≠ a, the answers will not be the same.
For example, (remembering that b ≠ a) let us assume that b = 10, a = 5
10 - 5 = 5
5 - 10 = -5
5 ≠ -5
So the commutative property of subtraction does not work unless in certain cases, in which a = b.
hope this helps
 
        
             
        
        
        
Answer:
a)  P(x<5)=0.
b) E(X)=15.
c) P(8<x<13)=0.3.
d) P=0.216.
e) P=1.
Step-by-step explanation:
We have the function:

a)  We calculate  the probability that you need less than 5 minutes to get up:

Therefore, the probability is P(x<5)=0.
b) It takes us between 10 and 20 minutes to get up. The expected value is to get up in 15 minutes. 
E(X)=15.
c) We calculate  the probability that you will need between 8 and 13 minutes:
![P(8\leq x\leq 13)=P(10\leqx\leq 13)\\\\P(8\leq x\leq 13)=\int_{10}^{13} f(x)\, dx\\\\P(8\leq x\leq 13)=\int_{10}^{13} \frac{1}{10} \, dx\\\\P(8\leq x\leq 13)=\frac{1}{10} \cdot [x]_{10}^{13}\\\\P(8\leq x\leq 13)=\frac{1}{10} \cdot (13-10)\\\\P(8\leq x\leq 13)=\frac{3}{10}\\\\P(8\leq x\leq 13)=0.3](https://tex.z-dn.net/?f=P%288%5Cleq%20x%5Cleq%2013%29%3DP%2810%5Cleqx%5Cleq%2013%29%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cint_%7B10%7D%5E%7B13%7D%20f%28x%29%5C%2C%20dx%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cint_%7B10%7D%5E%7B13%7D%20%5Cfrac%7B1%7D%7B10%7D%20%5C%2C%20dx%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cfrac%7B1%7D%7B10%7D%20%5Ccdot%20%5Bx%5D_%7B10%7D%5E%7B13%7D%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cfrac%7B1%7D%7B10%7D%20%5Ccdot%20%2813-10%29%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D%5Cfrac%7B3%7D%7B10%7D%5C%5C%5C%5CP%288%5Cleq%20x%5Cleq%2013%29%3D0.3)
Therefore, the probability is P(8<x<13)=0.3.
d)  We calculate the probability that you will be late to each of the 9:30am classes next week:
![P(x>14)=\int_{14}^{20} f(x)\, dx\\\\P(x>14)=\int_{14}^{20} \frac{1}{10} \, dx\\\\P(x>14)=\frac{1}{10} [x]_{14}^{20}\\\\P(x>14)=\frac{6}{10}\\\\P(x>14)=0.6](https://tex.z-dn.net/?f=P%28x%3E14%29%3D%5Cint_%7B14%7D%5E%7B20%7D%20f%28x%29%5C%2C%20dx%5C%5C%5C%5CP%28x%3E14%29%3D%5Cint_%7B14%7D%5E%7B20%7D%20%5Cfrac%7B1%7D%7B10%7D%20%5C%2C%20dx%5C%5C%5C%5CP%28x%3E14%29%3D%5Cfrac%7B1%7D%7B10%7D%20%5Bx%5D_%7B14%7D%5E%7B20%7D%5C%5C%5C%5CP%28x%3E14%29%3D%5Cfrac%7B6%7D%7B10%7D%5C%5C%5C%5CP%28x%3E14%29%3D0.6)
You have 9:30am classes three times a week.  So, we get:

Therefore, the probability is P=0.216.
e)  We calculate the probability that you are late to at least one 9am class next week:
![P(x>9.5)=\int_{10}^{20} f(x)\, dx\\\\P(x>9.5)=\int_{10}^{20} \frac{1}{10} \, dx\\\\P(x>9.5)=\frac{1}{10} [x]_{10}^{20}\\\\P(x>9.5)=1](https://tex.z-dn.net/?f=P%28x%3E9.5%29%3D%5Cint_%7B10%7D%5E%7B20%7D%20f%28x%29%5C%2C%20dx%5C%5C%5C%5CP%28x%3E9.5%29%3D%5Cint_%7B10%7D%5E%7B20%7D%20%5Cfrac%7B1%7D%7B10%7D%20%5C%2C%20dx%5C%5C%5C%5CP%28x%3E9.5%29%3D%5Cfrac%7B1%7D%7B10%7D%20%5Bx%5D_%7B10%7D%5E%7B20%7D%5C%5C%5C%5CP%28x%3E9.5%29%3D1)
Therefore, the probability is P=1.