The answer would be b, or 2
A buffer solution contains an equivalent amount of acid and base. The pH of the solution with an acid dissociation constant (pKa) value of 3.75 is 3.82.
<h3>What is pH?</h3>
The amount of hydrogen or the proton ion in the solution is expressed by the pH. It is given by the sum of pKa and the log of the concentration of acid and bases.
Given,
Concentration of salt [HCOO⁻] = 0.24 M
Concentration of acid [HCOOH] = 0.20 M
The acid dissociation constant (pKa) = 3.75
pH is calculated from the Hendersons equation as,
pH = pKa + log [salt] ÷ [acid]
pH = 3.75 + log [0.24] ÷ [0.20]
= 3.75 + log (1.2)
= 3.75 + 0.079
= 3.82
Therefore, 3.82 is the pH of the buffer.
Learn more about pH here:
brainly.com/question/27181245
#SPJ4
During selection of indicator. We choose an indicator which have pH range equivalent to the pH change of reaction to give better result and better observation.
So there are some different indicator are used in table 2 as compared to the table 1.
- Alizarin and phenolphthalein are basic indicator and their pH range is more than 8 so they are used in table 2
<span />
Answer:

Explanation:
The two requirements for a measurement are a <u>number</u> and a <u>unit.</u>
For example, here is a measurement:
38.6 cm
The <u>number</u> is 38.6 and the <u>unit</u> is cm, or centimeters.
Therefore, both <em>number </em>and <em>unit</em> are correct.
Answer is: formula of hydrate is CoCl₂· 6H₂O -c<span>obalt(II) chloride hexahydrate
</span>m(CoCl₂· xH₂O) = 1,62 g.
m(CoCl₂) = 0,88 g.
n(CoCl₂) = m(CoCl₂) ÷ M(CoCl₂)
n(CoCl₂) = 0,88 g ÷ 130 g/mol
n(CoCl₂) = 0,0068 mol.
m(H₂O) = 1,62 g - 0,88 g.
m(H₂O) = 0,74 g.
n(H₂O) = m(H₂O) ÷ m(H₂O)
n(H₂O) = 0,74 g ÷ 18 g/mol
n(H₂O) = 0,041 mol.
n(CoCl₂) : n(H₂O) = 0,0068 mol : 0,041 mol.
n(CoCl₂) : n(H₂O) = 1 : 6.