It would be mol/dm^3
Formula of concentration: (no. of moles/volume of solution in dm^3)
1 cm^3 = 0.001dm^3
Hope this helped. :)
The law of conservation of mass<span> states that </span>mass<span> in an isolated system is neither created nor destroyed by chemical reactions or physical transformations. According to the </span>law of conservation of mass<span>, the </span>mass<span> of the products in a chemical reaction must equal the </span>mass<span> of the reactants.
</span>
Each element absorbs light at specific wavelengths unique to that atom. When astronomers look at an object's spectrum, they can determine its composition based on these wavelengths.
Not sure if this is 100% but I hope it helps.
Answer:
Kindly check the explanation section.
Explanation:
From the description given in the question above, that is '' H subscript f to the power of degree of the reaction" we have that the description matches what is known as the heat of formation of the reaction, ∆fH° where the 'f' is a subscript.
In order to determine the heat of formation of any of the species in the reaction, the heat of formation of the other species must be known and the value for the heat of reaction, ∆H(rxn) must also be known. Thus, heat of formation can be calculated by using the formula below;
∆H(rxn) = ∆fH°( products) - ∆fH°(reactants).
That is the heat of formation of products minus the heat of formation of the reaction g specie(s).
Say heat of formation for the species is known as N(g) = 472.435kj/mol, O(g) = 0kj/mol and NO = unknown, ∆H°(rxn) = −382.185 kj/mol.
−382.185 = x - 472.435kj/mol = 90.25 kJ/mol
Answer:
so the earth has an atmosphere, which holds in all the oxygen, it has gravity, and it has the green house effect, causing the earth's warmth to stay in it's atmosphere