The moles of potassium dichromate , K₂Cr₂O₇ are required to prepare a 250 mL solution of with a concentration of 2.16 M is 0.54 mol.
given that :
molarity = 2.16 M
volume = 250 mL = 0.25 L
the molarity is given as :
molarity = number of moles / volumes in L
from this we can calculate the number of moles, we get :
number of moles of K₂Cr₂O₇ = molarity × volume
number of moles of K₂Cr₂O₇ = 2.16 × 0.25
number of moles of K₂Cr₂O₇ = 0.54 mol
Thus, The moles of potassium dichromate , K₂Cr₂O₇ are required to prepare a 250 mL solution of with a concentration of 2.16 M is 0.54 mol.
To learn more about moles here
brainly.com/question/15209553
#SPJ4
It should be a chemical change
Answer:
Cs is cesium and CrO₄ is chromate so CsCrO₄ is cesium chromate.
The percent by mass sugar of a solution : 11.07%
<h3>Further explanation</h3>
Given
mass of sugar = 12.45 g
mass of water = 100 g
Required
The percent by mass
Solution
Mass of solution :

Percent mass of sugar :

Answer:
V = 80.65L
Explanation:
Volume = ?
Number of moles n = 5 mol
Temperature (T) = 393.15K
Pressure = 1520mmHg
Ideal gas constant (R) = 62.363mmHg.L/mol.K
According to ideal gas law,
PV = nRT
P = pressure of the ideal gas
V = volume the gas occupies
n = number of moles of the gas
R = ideal gas constant (note this can varies depending on the unit of your variables)
T = temperature of the ideal gas
PV = nRT
Solve for V,
V = nRT / P
V = (5 * 62.363 * 393.15) / 1520
V = 80.65L
The volume the gas occupies is 80.65L