Gregor Mendel
Hope this helped !
Answer : The amount of carbon dioxide produced is, 197.12 grams.
Explanation : Given,
Moles of ethanol = 2.24 mole
Molar mass of carbon dioxide = 44 g/mole
The balanced chemical reaction will be,

First we have to calculate the moles carbon dioxide.
From the balanced chemical reaction, we conclude that
As, 1 mole of ethanol react to give 2 moles of carbon dioxide
So, 2.24 mole of ethanol react to give
moles of carbon dioxide
Now we have to calculate the mass of carbon dioxide.


Therefore, the amount of carbon dioxide produced is 197.12 grams.
Answer:
In chemical nomenclature, the IUPAC nomenclature of organic chemistry is a systematic method of naming organic chemical compounds as recommended by the International Union of Pure and Applied Chemistry (IUPAC). ... IUPAC names can sometimes be simpler than older names, as with ethanol, instead of ethyl alcohol.
Explanation:
In chemical nomenclature, the IUPAC nomenclature of organic chemistry is a systematic method of naming organic chemical compounds as recommended by the International Union of Pure and Applied Chemistry (IUPAC). ... IUPAC names can sometimes be simpler than older names, as with ethanol, instead of ethyl alcohol.
There's a lot of things built from petroleum, such as toothpaste.
Here's also another list.Gasoline 46%
Heating Oil / Diesel Fuel 20%
Jet Fuel ( kerosene) 8%
Propane / Propylene 7%
NGL / LRG 6%
Still Gas 4%
Petrochemical Feedstocks 2%
Petroleum Coke 2%
Residual / Heavy Fuel Oil 2%
Asphalt / Road Oil 2%
Lubricants 1%
Miscellaneous Products / Special Naphthas 0.4%
Other Liquids 1%
Aviation Gasoline 0.1%
Waxes 0.04%
Kerosene 0.02%
Answer:
D. ![K_{a} = \frac{[\text{H}^{+}][\text{NO}_{2}^{-}]}{[\text{HNO}_{2}]}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5B%5Ctext%7BH%7D%5E%7B%2B%7D%5D%5B%5Ctext%7BNO%7D_%7B2%7D%5E%7B-%7D%5D%7D%7B%5B%5Ctext%7BHNO%7D_%7B2%7D%5D%7D)
Explanation:
The general form of an equilibrium constant expression is
![K = \frac{[\text{Products}]}{[\text{Reactants}]}](https://tex.z-dn.net/?f=K%20%3D%20%5Cfrac%7B%5B%5Ctext%7BProducts%7D%5D%7D%7B%5B%5Ctext%7BReactants%7D%5D%7D)
In the equilibrium
HNO₂ ⇌ H⁺ + NO₂⁻
The products are H⁺ and NO₂⁻, and the reactant is HNO₂.
∴ ![K_{a} = \frac{[\text{H}^{+}][\text{NO}_{2}^{-}]}{[\text{HNO}_{2}]}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5B%5Ctext%7BH%7D%5E%7B%2B%7D%5D%5B%5Ctext%7BNO%7D_%7B2%7D%5E%7B-%7D%5D%7D%7B%5B%5Ctext%7BHNO%7D_%7B2%7D%5D%7D)