Answer;
=0.43 m/s²
Solution;
There will be the tension in the cable, T, upwards and the weight of the elevator, mg, downwards.
By Newton's second law, the sum of the forces will be equal to mass×acceleration.
Resultant force = m × a
Then T - mg = ma so the tension in the cable is
T = m(g+a)
The cable will break when T = 21,800 N
Solving for a, that happens when
a = 21800/2130 - g
= 10.23 - g (in m/s^2)
If you're using g = 9.8 m/s^2
Then the maximum acceleration allowed is 10.23-9.8 = 0.43 m/s^2
Answer:
The speed with which the pebble strikes the ground is 30.4m/s
Explanation:
Initial velocity (u) = 17.5m/s, height (h) = 31.5m, acceleration due to gravity (g) = 9.8m/s^2
V^2 = u^2 + 2gh = 17.5^2 + 2×9.8×31.5 = 306.25 + 617.4 = 923.65
V^2 = 923.65
V = √923.65 = 30.4m/s
Answer:
Electric and magnetic field waves are oriented at 90 degree angles relative to each other.
Explanation:
Answer:
The correct answer is the number 4. A wave on a pond is a mechanical wave which requires a medium to travel.
Explanation:
Mechanical waves are those that need a material medium to propagate. The waves of the sea and the waves that we produce on a guitar string, the sound, are examples of mechanical waves. Electromagnetic waves are energetic pulses capable of propagating in a vacuum. This way, a wave on a pond is a mechanical wave which requires a medium to travel.
Force = mass*acceleration.
Therefore, a force has a magnitude and direction.