Answer:0.669
Explanation:
Given
mass of clock 93 kg
Initial force required to move it 610 N
After clock sets in motion it requires a force of 514 N to keep moving it with a constant velocity
Initially static friction is acting which is more than kinetic friction
thus 613 force is required to overcome static friction


Answer:
12.7m/s
Explanation:
Given parameters:
Mass of diver = 77kg
Height of jump = 8.18m
Unknown:
Final velocity = ?
Solution:
To solve this problem, we apply the motion equation below:
v² = u² + 2gH
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
H is the height
Now insert the parameters and solve;
v² = 0² + 2 x 9.8 x 8.18
v = 12.7m/s
Answer:
- 1.42m/s²
Explanation:
Acceleration is defined as the change in velocity of a body with respect to time.
Acceleration = change in velocity/time
Change in velocity = final velocity - initial velocity
Acceleration = final velocity - initial velocity/time
Since she slows her car from 14.0 to 5.5m/s in 6seconds,
Initial velocity = 14m/s
Final velocity = 5.5m/s
Time = 6seconds
Substituting in the given formula, we will have
Acceleration = 5.5 - 14/6
Acceleration = - 8.5/6
Acceleration = - 1.42m/s²
The negative acceleration shows that the car decelerates.
Answer:
The force acting on a body is always equal to the product of the mass of the body and its acceleration.
Explanation:
The force of a body is defined as the product of mass and acceleration of the body.
According to Newton's second law, wherever there is a change in momentum of the body for an interval of time, there is a force acting on it.
F = (mv - mu) / t
= m (v -u) /t
= m a
Where,
(v - u)/t - is the change in velocity of the body in the interval of time. It is equal to the acceleration of the body.
Hence, the equation for the force for any body becomes, F = m x a
Answer:
Yes.
Explanation: the magnitude of the force is extremely small because the masses of the students are small relative to Earth's mass.