Yes u can help I need to see th worksheet to help tho
If the solution is treated as an ideal solution, the extent of freezing
point depression depends only on the solute concentration that can be
estimated by a simple linear relationship with the cryoscopic constant:
ΔTF = KF · m · i
ΔTF, the freezing point depression, is defined as TF (pure solvent) - TF
(solution).
KF, the cryoscopic constant, which is dependent on the properties of the
solvent, not the solute. Note: When conducting experiments, a higher KF
value makes it easier to observe larger drops in the freezing point.
For water, KF = 1.853 K·kg/mol.[1]
m is the molality (mol solute per kg of solvent)
i is the van 't Hoff factor (number of solute particles per mol, e.g. i =
2 for NaCl).
The correct option is C) The angle between the vectors is 120°.
Why?
We can solve the problem and find the correct option using the Law of Cosine.
Let A and B, the given two sides and R the resultant (sum),
Then,

So, using the law of cosines, we have:

Hence, we have that the angle between the vectors is 120°. The correct option is C) The angle between the vectors is 120°
Have a nice day!
Answer:
When the ball goes to first base it will be 4.23 m high.
Explanation:
Horizontal velocity = 30 cos17.3 = 28.64 m/s
Horizontal displacement = 40.5 m
Time
Time to reach the goal posts 40.5 m away = 1.41 seconds
Vertical velocity = 30 sin17.3 = 8.92 m/s
Time to reach the goal posts 40.5 m away = 1.41 seconds
Acceleration = -9.81m/s²
Substituting in s = ut + 0.5at²
s = 8.92 x 1.41 - 0.5 x 9.81 x 1.41²= 2.83 m
Height of throw = 1.4 m
Height traveled by ball = 2.83 m
Total height = 2.83 + 1.4 = 4.23 m
When the ball goes to first base it will be 4.23 m high.
Answers:
a) -171.402 m/s
b) 17.49 s
c) 1700.99 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
(3)
Where:
is the bomb's final height
is the bomb's initial height
is the bomb's initial vertical velocity, since the airplane was moving horizontally
is the time
is the acceleration due gravity
is the bomb's range
is the bomb's initial horizontal velocity
is the bomb's final velocity
Knowing this, let's begin with the answers:
<h3>b) Time
</h3>
With the conditions given above, equation (1) is now written as:
(4)
Isolating
:
(5)
(6)
(7)
<h3>a) Final velocity
</h3>
Since
, equation (3) is written as:
(8)
(9)
(10) The negative sign only indicates the direction is downwards
<h3>c) Range
</h3>
Substituting (7) in (2):
(11)
(12)