Hi there
1+0.035=(1+r/360)^360
Solve for r
R=(((1.035)^(1÷360)−1)×360)×100
R=3.44%
Answer:
The ratio of the number of rotten apples to the total number of apples is 6:35
The ratio of the number of good apples to the number of rotten apples is 35:6
Step-by-step explanation:
If you look at the wording the orders are switched.
Rotten apples: Good apples
Good apples: Rotten apples
Answer:
£1920
Step-by-step explanation:
The amount she spent in 2016 is 20% less than 2017. 20% less than is the same as 80% of the amount she spent in 2017. So, to find how much she spent in 2016, multiply 2400 by 0.80 (the decimal form of 80%):
2400 * 0.8 = 1920
Emily spent £1920 on holiday in 2016.
I hope this helps :)
The answer is c. You find the price per ounce. 4.29/24 = .178 then 3.49/18= .193 then 6.39/39= .163 and 2.49/14 = .177. The cheapest is c. Hope this helps!!!
Complete Question:
A population proportion is 0.4. A sample of size 200 will be taken and the sample proportion p will be used to estimate the population proportion. Use z- table Round your answers to four decimal places. Do not round intermediate calculations. a. What is the probability that the sample proportion will be within ±0.03 of the population proportion? b. What is the probability that the sample proportion will be within ±0.08 of the population proportion?
Answer:
A) 0.61351
Step-by-step explanation:
Sample proportion = 0.4
Sample population = 200
A.) proprobaility that sample proportion 'p' is within ±0.03 of population proportion
Statistically:
P(0.4-0.03<p<0.4+0.03)
P[((0.4-0.03)-0.4)/√((0.4)(.6))/200 < z < ((0.4+0.03)-0.4)/√((0.4)(.6))/200
P[-0.03/0.0346410 < z < 0.03/0.0346410
P(−0.866025 < z < 0.866025)
P(z < - 0.8660) - P(z < 0.8660)
0.80675 - 0.19325
= 0.61351
B) proprobaility that sample proportion 'p' is within ±0.08 of population proportion
Statistically:
P(0.4-0.08<p<0.4+0.08)
P[((0.4-0.08)-0.4)/√((0.4)(.6))/200 < z < ((0.4+0.08)-0.4)/√((0.4)(.6))/200
P[-0.08/0.0346410 < z < 0.08/0.0346410
P(−2.3094 < z < 2.3094)
P(z < -2.3094 ) - P(z < 2.3094)
0.98954 - 0.010461
= 0.97908