One hundred more than 792 = 792 + 100
792 + 100 = 892
892 is your answer
hope this helps
Answer:
100%
Step-by-step explanation:
Start with x.
x = x/1
Increase the numerator by 60% to 1.6x.
Decrease the numerator by 20% to 0.8.
The new fraction is
1.6x/0.8
Do the division.
1.6x/0.8 = 2x
The fraction increased from x to 2x. It became double of what it was. From x to 2x, the increase is x. Since x was the original number x is 100%.
The increase is 100%.
I would think it would be B
Answer:
<h3>The nth term
Tn = -8(-1/4)^(n-1) or Tn = 6(1/3)^(n-1) can be used to find all geometric sequences</h3>
Step-by-step explanation:
Let the first three terms be a/r, a, ar... where a is the first term and r is the common ratio of the geometric sequence.
If the sum of the first two term is 24, then a/r + a = 24...(1)
and the sum of the first three terms is 26.. then a/r+a+ar = 26...(2)
Substtituting equation 1 into 2 we have;
24+ar = 26
ar = 2
a = 2/r ...(3)
Substituting a = 2/r into equation 1 will give;
(2/r))/r+2/r = 24
2/r²+2/r = 24
(2+2r)/r² = 24
2+2r = 24r²
1+r = 12r²
12r²-r-1 = 0
12r²-4r+3r -1 = 0
4r(3r-1)+1(3r-1) = 0
(4r+1)(3r-1) = 0
r = -1/4 0r 1/3
Since a= 2/r then a = 2/(-1/4)or a = 2/(1/3)
a = -8 or 6
All the geometric sequence can be found by simply knowing the formula for heir nth term. nth term of a geometric sequence is expressed as
if r = -1/4 and a = -8
Tn = -8(-1/4)^(n-1)
if r = 1/3 and a = 6
Tn = 6(1/3)^(n-1)
The nth term of the sequence above can be used to find all the geometric sequence where n is the number of terms