both resistance will have same voltage across it which is equal to 5 volt.
if resistance value is different then voltage drop across them will be different.
current in both resistance would be same.
let's say resistance is 5 ohm of each one.
total current = total voltage / total resistance
= 10 /(5+5) = 10/10 = 1 amp
now voltage across 5 Ohm resistance = current × resistance = 1× 5 = 5 volt
High to low is what your looking for
Answer:
This metal has a specific heat of 0.9845J/ g °C
Explanation:
Step 1: Given data
q = m*ΔT *Cp
⇒with m = mass of the substance
⇒with ΔT = change in temp = final temperature T2 - initial temperature T1
⇒with Cp = specific heat (Cpwater = 4.184J/g °C) (Cpmetam = TO BE DETERMINED)
Step 2: Calculate specific heat
For this situation : we get for q = m*ΔT *Cp
q(lost, metal) = q(gained, water)
- mass of metal(ΔT)(Cpmetal) = mass of water (ΔT) (Cpwater)
-5 * (15-100)(Cpmetal) = 20* (15-10) * (4.184J/g °C =
-5 * (-85)(Cpmetal) = 418.4
Cpmetal = 418.4 / (-5*-85) = 0.9845 J/g °C
This metal has a specific heat of 0.9845J/ g °C
Answer: 
Explanation:
Complete ionic equation : In complete ionic equation, all the substance that are strong electrolyte and are present in an aqueous state and represented in the form of ions.
Net ionic equation : In the net ionic equations, we do not not include the spectator ions in the equations.
Spectator ions : The ions present on reactant and product side which do not participate in a reactions. The same ions present on both the sides.
The complete balanced ionic equation will be:
In this equation,
are the spectator ions.
By removing the spectator ions from the balanced ionic equation, we get the net ionic equation.
The net ionic equation will be:
