Stack effect? I'm not totally sure about this...
Explanation:
Large amount of tiny particles of water droplets, dust and smoke are present on a misty day. These tiny particles in the air scatter blue colour of white light passing through it. When this scattered light reaches our eyes, the smoke appears blue.
carbon, hydrogen, nitrogen, and oxygen. the number infront is how many of each element there are, they are increasing and decreasing
Answer:
There is 50.2 kJ heat need to heat 300 gram of water from 10° to 50°C
Explanation:
<u>Step 1: </u>Data given
mass of water = 300 grams
initial temperature = 10°C
final temperature = 50°C
Temperature rise = 50 °C - 10 °C = 40 °C
Specific heat capacity of water = 4.184 J/g °C
<u>Step 2:</u> Calculate the heat
Q = m*c*ΔT
Q = 300 grams * 4.184 J/g °C * (50°C - 10 °C)
Q = 50208 Joule = 50.2 kJ
There is 50.2 kJ heat need to heat 300 gram of water from 10° to 50°C
Answer:
D. is the Answer. ✅
Explanation:
The Moon is 1/4 the size of Earth.
A is not right because Moon isn't a dwarf planet.❌
B is not right because the Moon isn't 1/2 the size of Earth.❌
C is not right because the Moon is no where near as large as Earth.❌
Answer:
The equilibrium concentrations are:
[SO2]=[NO2] = 0.563 M
[SO3]=[NO] = 1.04 M
Explanation:
<u>Given:</u>
Equilibrium constant K = 3.39
[SO2] = [NO2] = [SO3] = [NO] = 0.800 M
<u>To determine:</u>
The equilibrium concentrations of the above gases
Calculation:
Set-up an ICE table for the given reaction

I 0.800 0.800 0.800 0.800
C -x -x +x +x
E (0.800-x) (0.800-x) (0.800+x) (0.800+x)
The equilibrium constant is given as:
![Keq = \frac{[SO3][NO]}{[SO2][NO2]}=\frac{(0.800+x)^{2}}{(0.800-x)^{2}}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BSO3%5D%5BNO%5D%7D%7B%5BSO2%5D%5BNO2%5D%7D%3D%5Cfrac%7B%280.800%2Bx%29%5E%7B2%7D%7D%7B%280.800-x%29%5E%7B2%7D%7D)

x = 0.2368 M
[SO2]=[NO2] = 0.800 -x = 0.800 - 0.2368 = 0.5632 M
[SO3]=[NO] = 0.800 +x = 0.800 + 0.2368 = 1.037 M