<span>n = 5
The formula for the confidence interval (CI) is
CI = m ± z*d/sqrt(n)
where
CI = confidence interval
m = mean
z = z value in standard normal table for desired confidence
n = number of samples
Since we want a 95% confidence interval, we need to divide that in half to get
95/2 = 47.5
Looking up 0.475 in a standard normal table gives us a z value of 1.96
Since we want the margin of error to be ± 0.0001, we want the expression ± z*d/sqrt(n) to also be ± 0.0001. And to simplify things, we can omit the ± and use the formula
0.0001 = z*d/sqrt(n)
Substitute the value z that we looked up, and get
0.0001 = 1.96*d/sqrt(n)
Substitute the standard deviation that we were given and
0.0001 = 1.96*0.001/sqrt(n)
0.0001 = 0.00196/sqrt(n)
Solve for n
0.0001*sqrt(n) = 0.00196
sqrt(n) = 19.6
n = 4.427188724
Since you can't have a fractional value for n, then n should be at least 5 for a 95% confidence interval that the measured mean is within 0.0001 grams of the correct mass.</span>
Answer:
25
Step-by-step explanation:
Answer:
9x^15y^3z^2 is your answer
Step-by-step explanation:
b. -2.5 × 10-4 is the answer
Answer:
12x + 3
General Formulas and Concepts:
<u>Pre-Algebra</u>
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
6 + 4(3x - 2) + 5
<u>Step 2: Simplify</u>
- Distribute 4: 6 + 12x - 8 + 5
- Combine like terms (Z): 12x + 3