To make something electrical you need electricity and the wires will turn a magnet into an electromagnet.
or for a short answer: <span>1) soft iron core 2) coil of insulated wire 3)source of electricity</span>
Answer: The correct answer is True.
Explanation:
Loudness of sound is referred to how soft or loud a sound is for the listener.
This term is measured in a unit known as decibels referred to as dB.
This unit is used to measure the relative intensity of sounds on a scale from zero to 100 dB.
More the value of decibels, it will be uncomfortable for a person to hear that sound.
So Yes, the loudness of sound is measured in decibels.
Answer:
θ₀ = 84.78° (OR) 5.22°
Explanation:
This situation can be treated as projectile motion. The parameters of this projectile motion are:
R = Range of Projectile = 150 m
V₀ = Launch Speed of Projectile = 90 m/s
g = 9.8 m/s²
θ₀ = Launch angle (OR) Angle of Elevation = ?
The formula for range of a projectile is given as:
R = V₀² Sin 2θ₀/g
Sin 2θ₀ = Rg/V₀²
Sin 2θ₀ = (150 m)(9.8 m/s²)/(90 m/s)²
2θ₀ = Sin⁻¹ (0.18)
θ₀ = 10.45°/2
<u>θ₀ = 5.22°</u>
Also, we know that for the same launch velocity the range will be same for complementary angles. Therefore, another possible value of angle is:
θ₀ = 90° - 5.22°
<u>θ₀ = 84.78°</u>
What do we know that might help here ?
-- Temperature of a gas is actually the average kinetic energy of its molecules.
-- When something moves faster, its kinetic energy increases.
Knowing just these little factoids, we realize that as a gas gets hotter, the average speed of its molecules increases.
That's exactly what Graph #1 shows.
How about the other graphs ?
-- Graph #3 says that as the temperature goes up, the molecules' speed DEcreases. That can't be right.
-- Graph #4 says that as the temperature goes up, the molecules' speed doesn't change at all. That can't be right.
-- Graph #2 says that after the gas reaches some temperature and you heat it hotter than that, the speed of the molecules starts going DOWN. That can't be right.
--
Answer:
conductor
Explanation:
A "conductor" is a material that allows the charges to pass freely from one body to the other. This causes a movement among the electrons and this means that<em> the charge will be passed entirely to the object receiving it.</em> This is also called <em>"conductive material."</em>
Examples of conductors are: <em>copper, aluminum, gold, silver, seawater, etc.</em>
The opposite of conductors are called "insulators." These do not allow the free movement of charges from one object to the other.
Examples of insulators: <em>plastic, rubber, paper, glass, wool, dry air, etc.</em>