Baking a cake creates a endothermic reaction. When heated, the baking soda/powder reacts, the eggs change form, and everything else follows suit. The baking soda/powder creates the rising of the cake.
Answer:
The change in energy of the gas during the process is
joules.
Explanation:
We can represent this process by the First Law of Thermodynamics, in which gas does work on its surroundings and absorbs heat from there to describe its change in energy. In other words:

Where:
- Heat absorbed by the gas, measured in joules.
- Work done by the gas, measured in joules.
- Change in energy, measured in joules.
If we know that
and
, the change in energy of the gas is:


The change in energy of the gas during the process is
joules.
Answer:
D. if it is dark, then an owl will find a mouse by the sound the mouse makes
Answer: 29.50 m
Explanation: In order to calculate the higher accelation to stop a train without moving the crates inside the wagon which is traveling at constat speed we have to use the second Newton law so that:
f=μ*N the friction force is equal to coefficient of static friction multiply the normal force (m*g).
f=m.a=μ*N= m*a= μ*m*g= m*a
then
a=μ*g=0.32*9.8m/s^2= 3.14 m/s^2
With this value we can determine the short distance to stop the train
as follows:
x= vo*t- (a/2)* t^2
Vf=0= vo-a*t then t=vo/a
Finally; x=vo*vo/a-a/2*(vo/a)^2=vo^2/2a= (49*1000/3600)^2/(2*3.14)=29.50 m
Answer:
500 watts
Explanation:
Recall that the definition of power is the amount of energy delivered per unit of time.
In our case, the energy delivered is potential energy which we can estimate as the product of the weight of the object times the distance it is lifted above ground:
200 N x 10 m = 2000 Nm
then the power is the quotient of this potential energy divided the time it took to lift the object to that position:
Power = 2000 / 4 Nm/s = 500 Nm/s = 500 watts