Answer:
40.4 kJ
Explanation:
Step 1: Given data
- Heat of sublimation of CO₂ (ΔH°sub): 32.3 kJ/mol
Step 2: Calculate the moles corresponding to 55.0 g of CO₂
The molar mass of CO₂ is 44.01 g/mol.
n = 55.0 g × 1 mol/44.01 g = 1.25 mol
Step 3: Calculate the heat (Q) required to sublimate 1.25 moles of CO₂
We will use the following expression.
Q = n × ΔH°sub
Q = 1.25 mol × 32.3 kJ/mol = 40.4 kJ
<span><em><u>Climatology </u>is a <u>subspecialty </u>of a </em><u><em>Climate</em></u><em> and for how the <u>climate</u> changes. This is averaged out from over a set of a period of time.
<u>I hope this helps! ;D</u></em></span>
Answer : The initial temperature of system 2 is, 
Explanation :
In this problem we assumed that the total energy of the combined systems remains constant.
The mass remains same.
where,
= heat capacity of system 1 = 19.9 J/mole.K
= heat capacity of system 2 = 28.2 J/mole.K
= final temperature of system =
= initial temperature of system 1 =
= initial temperature of system 2 = ?
Now put all the given values in the above formula, we get
Therefore, the initial temperature of system 2 is, 