To simplify the function, we need to know some basic identities involving exponents.
1. b^(ax)=(b^x)^a=(b^a)^x
2. b^(x/d) = (b^x)^(1/d) = ((b^(1/d)^x)
Now simplify f(x), where
f(x)=(1/3)*(81)^(3*x/4)
=(1/3)(3^4)^(3*x/4) [ 81=3^4 ]
=(1/3)(3^(4*3*x/4) [ rule 1 above ]
=(1/3) (3^(3*x)
=(1/3)(3^(3x)) [ or (1/3)(27^x), by rule 1 ]
(A) Initial value is the value of the function when x=0, i.e.
initial value
= f(0)
=(1/3)(3^(3x))
=(1/3)(3^(3*0))
=(1/3)(3^0)
=(1/3)(1)
=1/3
(B) the simplified base base is 3 (or 27 if the other form is used)
(C) The domain for an exponential function is all real values ( - ∞ , + ∞ ).
(D) The range of an exponential function with a positive coefficient and without vertical shift is ( 0, + ∞ ).
Answer:
0.24 kilometres
Step-by-step explanation:
1cm represents 240000cm on actual map
therefore to get the actual representation
1km=1000000cm
? =240000cm
Do cross multiplication;
(240000cm x 1km)/1000000cm
=0.24km
Answer:
Se=1.2
Step-by-step explanation:
The standard error is the standard deviation of a sample population. "It measures the accuracy with which a sample represents a population".
The central limit theorem (CLT) states "that the distribution of sample means approximates a normal distribution, as the sample size becomes larger, assuming that all samples are identical in size, and regardless of the population distribution shape"
The sample mean is defined as:

And the distribution for the sample mean is given by:

Let X denotes the random variable that measures the particular characteristic of interest. Let, X1, X2, …, Xn be the values of the random variable for the n units of the sample.
As the sample size is large,(>30) it can be assumed that the distribution is normal. The standard error of the sample mean X bar is given by:

If we replace the values given we have:

So then the distribution for the sample mean
is:

Answer:
A: $15
Step-by-step explanation:
35·3=105
105+25=135
135-115=15
Hoped this helps!
Thats is 200 total 100 peso plus 100 animales is 200