Answer: Most of them lie in a belt between Earth and Mars.
Explanation:
Asteroids are small rocky bodies having irregular shape size which orbit sun. Majority of the asteroids are found in a belt between orbits of Mars and Jupiter. Scientists presume that these asteroids are remains of a planet that never formed between Mars and Jupiter due to great gravitational pull of the largest planet of the solar -system - Jupiter.
Thus, the incorrect description of the asteroids is: Most of them lie in a belt between Earth and Mars.
The number of C atoms in 0.524 moles of C is 3.15 atoms.
The number of
molecules in 9.87 moles
is 59.43 molecules.
The moles of Fe in 1.40 x
atoms of Fe is 0.23 x 
The moles of
in 2.30x
molecules of
is 3.81.
<h3>What are moles?</h3>
A mole is defined as 6.02214076 ×
of some chemical unit, be it atoms, molecules, ions, or others. The mole is a convenient unit to use because of the great number of atoms, molecules, or others in any substance.
A. The number of C atoms in 0.524 mole of C:
6.02214076 ×
x 0.524 mole
3.155601758 atoms =3.155 atoms
B. The number of
molecules in 9.87 moles of
:
6.02214076 ×
x 9.87
59.4385293 molecules= 59.43 molecules
C. The moles of Fe in 1.40 x
atoms of Fe:
1.40 x
÷ 6.02214076 × 
0.2324754694 x
moles.
0.23 x
moles.
D. The moles of
in 2.30x
molecules of
:
2.30x
÷ 6.02214076 × 
3.819239854 moles=3.81 moles
Learn more about moles here:
brainly.com/question/8455949
#SPJ1
Answer:
The answer is not 9.9 i used that and got it wrong
Explanation:
Answer:
12 moles of F₂
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
N₂ + 3F₂ —> 2NF₃
From the balanced equation above,
3 moles of F₂ reacted to produce 2 moles of NF₃.
Finally, we shall determine the number of mole of F₂ needed to produce 8 moles of NF₃. This can be obtained as illustrated below:
From the balanced equation above,
3 moles of F₂ reacted to produce 2 moles of NF₃.
Therefore, Xmol of F₂ will react to produce 8 moles of NF₃ i.e
Xmol of F₂ = (3 × 8)/2
Xmol of F₂ = 12 moles
Thus, 12 moles of F₂ is needed for the reaction.
To determine a planet's mass, astronomers typically measure the minuscule movement of the star caused by the gravitational tug of an orbiting planet. For planets the massof Earth detecting such a tiny tug is extraordinarily challenging with current technology