Answer:
CCl4 - Nonpolar
CH3OH - polar
NH3 - polar
CS2 - Nonpolar
Explanation:
One important thing that we should know is that polarity has to do with the presence of a resultant dipole moment in a molecule.
Dipole moment is a vector quantity, This means that its direction is also taken into account when discussing the dipole moment of molecules.
Hence, symmetrical molecules such as CS2 and CCl4 are non-polar even though they have polar bonds because their dipoles cancel out(zero resultant dipole moment).
On the other hand, NH3 and CH3OH are non-symmetrical molecules hence they possess an overall dipole moment and are polar molecules.
<span>Report your numerical answer in units of nm. Use significant figur</span>
Answer:
D.) H-O
Explanation:
Polarity is determined based on the difference in electronegativity of the atoms. The greater the difference, the more polar the bond. The general trend is that the atoms in the top-right corner of the periodic table are the most electronegative.
A.) is incorrect because H-H has no electronegativity difference, making it nonpolar.
B.) and C.) are incorrect because their electronegativity differences are not the greatest.
D.) is correct because the electronegativity difference between the H and O is the greatest.
G(2)=2
For this, you can plug in 2 everywhere you see an n. So the equation will read:
g(2)=g(2-1)+2 -> g(2)=g(1)+2. Since we are given g(1)=0, we can plug in 0 where we see g(1). The equation is now. g(2)=0+2. So, g(2)=2.