Answer:
Correct integral, third graph
Step-by-step explanation:
Assuming that your answer was 'tan³(θ)/3 + C,' you have the right integral. We would have to solve for the integral using u-substitution. Let's start.
Given : ∫ tan²(θ)sec²(θ)dθ
Applying u-substitution : u = tan(θ),
=> ∫ u²du
Apply the power rule ' ∫ xᵃdx = x^(a+1)/a+1 ' : u^(2+1)/ 2+1
Substitute back u = tan(θ) : tan^2+1(θ)/2+1
Simplify : 1/3tan³(θ)
Hence the integral ' ∫ tan²(θ)sec²(θ)dθ ' = ' 1/3tan³(θ). ' Your solution was rewritten in a different format, but it was the same answer. Now let's move on to the graphing portion. The attachment represents F(θ). f(θ) is an upward facing parabola, so your graph will be the third one.
What is the question though?? and what are the answer choices??
The graphs arey=(1/3)x^2
and y=3
they intersect at x=3
so the limits are x=0 and 3
to rotate it about y=k, minus k from every function

which evaluates to 72/5pi
A is asnwer
Answer:
33. 224
34. 128
35. 244
36. 160
Step-by-step explanation:
:)