How does the area of triangle RST compare to the area of triangle LMN? is 2 square units less than the The area of △ RST area of △ LMN The area of △ RST is equal to the area of △ LMN The area of △ RST is 2 square units greater than the area of △ LMN The area of △ RST is 4 square units greater than the area of △ LMN.Jun 25, 2021
Answer:
part A) The scale factor of the sides (small to large) is 1/2
part B) Te ratio of the areas (small to large) is 1/4
part C) see the explanation
Step-by-step explanation:
Part A) Determine the scale factor of the sides (small to large).
we know that
The dilation is a non rigid transformation that produce similar figures
If two figures are similar, then the ratio of its corresponding sides is proportional
so
Let
z ----> the scale factor

The scale factor is equal to

substitute

simplify

Part B) What is the ratio of the areas (small to large)?
<em>Area of the small triangle</em>

<em>Area of the large triangle</em>

ratio of the areas (small to large)

Part C) Write a generalization about the ratio of the sides and the ratio of the areas of similar figures
In similar figures the ratio of its corresponding sides is proportional and this ratio is called the scale factor
In similar figures the ratio of its areas is equal to the scale factor squared
Answer:
y=9b to the second power t over m
Step-by-step explanation:
should look like this
y=9b^2t/m
Answer:
C. The sum of 18 and half the product of 9 and 4.
We are given

Since, we have to solve for F
so, we will isolate F on anyone side
step-1:
Multiply both sides by 60


step-2:
Divide both sides by 11


step-3:
Add both sides by 32


so, we get
................Answer