Answer:
Catalysis
Explanation:
Pepsin is able to break peptide bonds, turning large protein molecules into small peptide chains.
When pepsin acts to break down pepsinogen (inactive form of pepsin), it is accelerating pepsinogen → pepsin reactions, acting as a catalyst, reducing activation energy and favoring proteolytic reactions at a higher rate.
This process of accelerating reactions is characteristic of enzymes and is known as catalysis.
<span>the empirical formula is C3H8O2
You need to determine the relative number of moles of hydrogen and carbon. So you first calculate the molar mass of CO2 and H20
Atomic weight of carbon = 12.0107
Atomic weight of hydrogen = 1.00794
Atomic weight of oxygen = 15.999
Molar mass CO2 = 12.0107 + 2 * 15.999 = 44.0087
Molar mass H2O = 2 * 1.00794 + 15.999 = 18.01488
Now calculate the number of moles of CO2 and H2O you have
Moles CO2 = 2.086 g / 44.0087 g/mole = 0.0474 mole
Moles H2O = 1.134 g / 18.01488 g/mole = 0.062948 mole
Calculate the number of moles of carbon and hydrogen you have. Since there's 1 carbon atom per CO2 molecule, the number of moles of carbon is the same as the number of moles of CO2. But since there's 2 hydrogen atoms per molecule of H2O, The number of moles of hydrogen is double the number of moles of H2O
Moles Carbon = 0.0474
Moles Hydrogen = 0.062948 * 2 = 0.125896
Now we need to determine how much oxygen is in the compound. Just take the mass of the compound and subtract the mass of carbon and hydrogen. What's left will be the mass of oxygen. Then divide that mass by the atomic weight of oxygen to get the number of moles of oxygen we have.
1.200 - 0.0474 * 12.0107 - 0.125896 * 1.00794 = 0.503797
Moles oxygen = 0.503797 / 15.999 = 0.031489
So now we have a ratio of carbon:hydrogen:oxygen of
0.0474 : 0.125896 : 0.031489
We need to find a ratio of small integers that's close to that ratio. Start by dividing everything by 0.031489 (selected because it's the smallest value) getting
1.505288 : 3.998095 : 1
The 1 for oxygen and the 3.998095 for hydrogen look close enough. But the 1.505288 for carbon doesn't work. But it looks like if we double all the numbers, we'll get something close to an integer for everything. So do so.
3.010575 : 7.996189 : 2
Now this looks good. Rounding everything to an integer gives us
3 : 8 : 2
So the empirical formula is C3H8O2</span>
The question is incomplete, the remaining part of the question is
Which of the above occurs for each of the following circumstances?
A 50-milliliter sample of a 2-molar Cd(NO3)2 solution is added to the left beaker.
Answer:
Voltage decreases but remains > zero.
Explanation:
Given the balanced redox reaction equation:
2Ag^+(aq) + Cd(s) ---------------> 2 Ag(s) + Cd^2+(aq)
Concentration affects the cell voltage according to Nernst equation. Change in concentration must lead to a change in cell Voltage.
As the concentration of the Cd(NO3)2 solution is increased, voltage decreases because of the increase in the concentration values but voltages remains above zero.
My cereal box says "net wait g (500)" so it's probably Grams
The answer would be "air, wood". Gases have the highest Kinetic energy and least Potential energy. Liquids have the 2nd highest Kinetic energy and 2nd least potential energy and solids have the least kinetic energy and highest potential energy.