Answer:
−2/1−2x1
Step-by-step explanation:
Pi radians = 180 degrees

The answer is: 3.491 radians to 3 dp.
Answer:
30%
Step-by-step explanation:
To be able to calculate the percent of increase between two numbers, you have to divide the increase by the initial number and multiply by 100:
Increase= 1,500
Initial number=5,000
Percent of increase=(1,500/5,000)*100
Percent of increase=0.3*100
Percent of increase=30%
According to this, the answer is that the percent of increase was 30%.
Answer:
The function shown by the graph is
⇒ 1st answer
Step-by-step explanation:
<em>To find the function chose two points from the graph and substitute their x-coordinates in each function, the right function we give you the corresponding y-coordinates</em>
From the figure:
∵ The graph passes through points (2 , 1) and (3 , 1.5)
∵ ![f(x)=1+\frac{1}{2}\sqrt[3]{x-2}](https://tex.z-dn.net/?f=f%28x%29%3D1%2B%5Cfrac%7B1%7D%7B2%7D%5Csqrt%5B3%5D%7Bx-2%7D)
∵ x = 2
∴ ![f(2)=1+\frac{1}{2}\sqrt[3]{2-2}](https://tex.z-dn.net/?f=f%282%29%3D1%2B%5Cfrac%7B1%7D%7B2%7D%5Csqrt%5B3%5D%7B2-2%7D)
∴ ![f(2)=1+\frac{1}{2}\sqrt[3]{0}](https://tex.z-dn.net/?f=f%282%29%3D1%2B%5Cfrac%7B1%7D%7B2%7D%5Csqrt%5B3%5D%7B0%7D)
∴
∴ f(2) = 1 ⇒ same value of y-coordinate
∵ x = 3
∴ ![f(3)=1+\frac{1}{2}\sqrt[3]{3-2}](https://tex.z-dn.net/?f=f%283%29%3D1%2B%5Cfrac%7B1%7D%7B2%7D%5Csqrt%5B3%5D%7B3-2%7D)
∴ ![f(3)=1+\frac{1}{2}\sqrt[3]{1}](https://tex.z-dn.net/?f=f%283%29%3D1%2B%5Cfrac%7B1%7D%7B2%7D%5Csqrt%5B3%5D%7B1%7D)
∴
∴ f(3) = 1.5 ⇒ same value of y-coordinate
∴ The function shown by the graph is ![f(x)=1+\frac{1}{2}\sqrt[3]{x-2}](https://tex.z-dn.net/?f=f%28x%29%3D1%2B%5Cfrac%7B1%7D%7B2%7D%5Csqrt%5B3%5D%7Bx-2%7D)
7 m - Longitud de la escalera
3.5 m - Separación entre la pared y la base inferior de la escalera.
Planteamiento.
1.- La escalera apoyada en la pared forma un triangulo rectángulo.
2.- La longitud de la escalera corresponde a la hipotenusa. 7 metros
3.- La longitud de la base de la escalera a la pared mide 3.5 metros, corresponde al cateto adyacente que se forma junto con la hipotenusa.
Podemos calcula una función trigonométrica y con ella podemos obtener el ángulo solicitado.
Coseno del angulo = cateto adyacente/ hipotenusa
Coseno del angulo = 3.5/7= 0.5
El ángulo lo podemos encontrar buscando el arco cuyo seno es 0.5
Puedes determinarlo con la calculadora:
Ángulo = Inv + Seno (0.5)
Angulo = 30º