I can't see either of them, so I must assume that they're both
far away from me, at different places in the solar system.
So I can say with some assurance that whichever ball is on the
more massive planet will have greater acceleration when it's dropped.
Its acceleration will be constant, from the instant of release until the
instant it hits the "ground" or whatever they call it on that planet.
Answer:
(1) Initial speed, 
Final speed, 
Average speed, 
(2) Force of gravity, 
Explanation:
(1)
Given,
Distance, 
Time, 
It is given that drag racer started at rest.
So Initial speed, 
Using Newton's second equation of motion,

Newton's first equation of motion,

So, Final speed, 
Average speed is defined as totle distance divided by totle time.

So, Average speed, 
(2)
Gravitation: It is the natural phenomenon in which two different bodies attract each other by virtue of their masses.
According to Newton's law of gravitation, the force of attraction between two bodies is directly proportional to the masses of the bodies and inversely proportional to square of distance between centers of mass of the bodies.
where
is constant of proportionality and known as gravitation constant.
Given,
Mass of Jupiter, 
Mass of Ganymede, 
Distance between their centers of mass, 

So, Force of gravity, 
Well, that's not actually "diffraction".
The fuzzy edge of the moon, and the added glow that's sometimes seen
around it, are all effects caused by the light passing through air before it
reaches you.
This gives you some idea of why astronomers go to such effort and
expense to get their telescopes above as much of the atmosphere as
possible ... placing all serious observatories on mountaintops, and even
putting telescopes in orbit. It's all because the air does such a job on the
light that's trying to shine through it. We have to make do with whatever's
left over after that.
Answer:
Explanation:
This problem is related to vertical motion, and the equation that models it is:
(1)
Where:
is the rock's final height
is the rock's initial height
is the rock's initial velocity
is the angle at which the rock was thrown (directly upwards)
is the time
is the acceleration due gravity in Planet X
Isolating
and taking into account
:
(2)
(3)
(4) This is the acceleration due gravity in Planet X