I’m trying to get things expanded graph explanation sorry
the friction force provided by the brakes is 30000 N.
<h3>What is friction force?</h3>
Friction force is the force that opposes the motion between two bodies in contact.
To calculate the average friction force provided by the brakes, we apply the formula below.
Formula:
- K.E = F'd............. Equation 1
Where:
- K.E = Kinetic energy of the train
- F' = Friction force provided by the brakes
- d = distance
Make F' the subject of the equation
- F' = K.E/d............ Equation 2
From the question,
Given:
Substitute these values into equation 2
- F' = (8.1 ×10⁶)/270
- F' = 30000 N
Hence, the friction force provided by the brakes is 30000 N
Learn more about friction force here: brainly.com/question/13680415
Answer:
a. by collisions and mergers of planetesimals.
Explanation:
Inner planets are planets within 1.5 AU distance from the sun. These are called terrestrial planets because they are somewhat similar to Earth, mainly made of rocks.
The main ingredient of these planets are solar nebula and interstellar dust condensation of which leads to formation of small rock particles. These particles come close to each other under in the influence of gravity and other forces. As the mass of the particles increase they form planetesimals, these planetesimals eventually merge to form planets.
Answer:
The magnitude of the force that each wire exerts on the other will increase by a factor of two.
Explanation:
force on parallel current carrying wire, F = BILsinθ
where;
B is the strength of the magnetic field
L is the length of the wire
I is the magnitude of current on the wire
θ is the angle of inclination of the wire
Assuming B, L and θ is constant, then F ∝ I
F = kI

When the amount of current is doubled in one of the wires, lets say the second wire;

Also, if will double the amount of current on the first wire, then
F₁ = 2F₂
Therefore, the magnitude of the force that each wire exerts on the other will increase by a factor of two.
Answer:
v = 8.45 m/s
Explanation:
given,
mass = 3 kg
angle = 30.0°
vertical distance = 3.3 m
μ = 0.06
according to conservation of energy
KE(loss) = PE(gain) + Work done (against\ friction)..............(1)
frictional Force


work against friction
W = F d


Potential energy
PE = mgh


v = 8.45 m/s
the minimum speed is equal to 8.45 m/s