To solve this we are going to use formula for the future value of an ordinary annuity:
![FV=P[ \frac{(1+ \frac{r}{n} )^{nt} -1}{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3DP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%5E%7Bnt%7D%20-1%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
where

is the future value

is the periodic payment

is the interest rate in decimal form

is the number of times the interest is compounded per year

is the number of years
We know from our problem that the periodic payment is $50 and the number of years is 3, so

and

. To convert the interest rate to decimal form, we are going to divide the rate by 100%


Since the interest is compounded monthly, it is compounded 12 times per year; therefore,

.
Lets replace the values in our formula:
![FV=P[ \frac{(1+ \frac{r}{n} )^{nt} -1}{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3DP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%5E%7Bnt%7D%20-1%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
![FV=50[ \frac{(1+ \frac{0.04}{12} )^{(12)(3)} -1}{ \frac{0.04}{12} } ]](https://tex.z-dn.net/?f=FV%3D50%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7B0.04%7D%7B12%7D%20%29%5E%7B%2812%29%283%29%7D%20-1%7D%7B%20%5Cfrac%7B0.04%7D%7B12%7D%20%7D%20%5D)

We can conclude that after 3 years you will have $1909.08 in your account.
6 / (x+1) = 1/2
x +1 = 12
x = 11
Answer is d ....(11)
Answer:
r = i + j + (-2/3)(3i - j)
Step-by-step explanation:
Vector Equation of a line - r = a + kb ; where r is the resultant vector of adding vector a and vector b and k is a constant
if a = i + j ; b = t(3i - j) and r = -i +s(j)
for this to be true all the vector components must be equal
summing i 's
i + 3ti = -i; then t = -2/3
j - tj = sj; then s = 1-t; substitue t; s=1+2/3 = 5/3
so r = i + j + (-2/3)(3i - j) which will symplify to -i + 5/3j
Answer:
(1.6, 7.02)
Step-by-step explanation:
5 more brainliest for expert : )
Fit Fast: a set feet per class => y = Ax
Stepping Up: a monthly fee plus an additioal fee per class => h = Bx + C
You can discard the second and the fourth systems because they do not have the form established from the statement.
The first system produce an obvious result given that is represents an option that is always better than the other 5.5x will be lower than 7.5x + 10 for any positive value of x, and so there is no need to make any comparission.
The third system is
y = 7.5x and y = 5.5x + 10 which need to be solved to determine when one rate is more convenient than the other.
Answer: y = 7.5x and y = 5..5x + 10