Based on the calculations, the depth of tent is equal to 12 feet.
<h3>How to calculate the depth of the tent?</h3>
Based on the diagram (see attachment) and information provided, we can logically deduce the following parameters (points):
- Triangle ABC is an isosceles triangle (AB = AC).
- The front and back of the triangle are identical triangles.
- Side AD is perpendicular side BC.
- CD is the midpoint of BC i.e CD = BC/2 = 6/2 = 3 feet.
Next, we would determine the height of the right-angled triangle (ADC) by applying Pythagorean theorem:
AC² = AD² + DC²
AD² = AC² - DC²
AD² = 5² - 3²
AD² = 25 - 9
AD² = 16
AD = √16
AD = 4 feet.
Also, we would determine the area of the triangle (ABC):
Area = 1/2 × b × h
<u>Where:</u>
Substituting the given parameters into the formula, we have;
Area = 1/2 × 6 × 4
Area = 12 feet².
Depth of tent = 3 × height of ADC
Depth of tent = 3 × 4
Depth of tent = 12 feet.
Read more on area of triangle here: brainly.com/question/21917592
#SPJ1
This is a system of equations.
First, you set everything in terms of y.
Take the first equation and move set everything equal to y
y=0+2x
Since it’s 0, you don’t need to put it, so
y=2x works.
Then, you plug y=2x into the bottom equation, for the y.
-7x +3(2x)=2. You do this because now you have the same variable for both and it can be solved easily.
Then you can simplify.
-7x+3x = 2
Then combine like terms.
-4x = 2
Divide by -4 on each side.
x = -1/2
So, now that you have x, you can plug in your x-value back into the top equation.
-2(-1/2) + y = 0
Combine like terms
1+y=0
Get y by itself
y=-1
There you have it!
You can check by plugging in both values to any of the equations. We will use the top one here.
-2(-1/2) + (-1) =0
+1 + -1 = 0
It works!
So,
X= -1/2
Y= -1
Please rate me Brainliest answer :)
Jenny bakes 10 cookies. she puts 7 chocolate chips on each cookie draw a tape diagram and label the total amount
Interval notation is used to write a set of real numbers from one value to another value.
On the left, you start with left parenthesis or left bracket.
Then you follow by two numbers separated by a comma.
You then finish with a right parenthesis or right bracket.
To include a number, use a square bracket.
To exclude a number use parenthesis.
To write the set of numbers, you need to list the smallest number in the set followed by the largest number in the set. An interval is always stated with two numbers, from the smallest in the set to the largest in the set. The numbers are always separated by a comma.
Examples:
1) All numbers from 6 to 10, including 6 and 10.
Algebra: 6 <= x <= 10
Interval: [6, 10]
Notice brackets since both 6 and 10 are included in this interval.
2) All number from 5 to 20, including 5 but not including 20.
Algebra 5 <= x < 20
Interval: [5, 20)
Bracket with 5 means include 5. Parenthesis with 20 means 20 is not included.
3) All numbers greater than or equal to 7.
Algebra: x >= 7
Interval: [7, ∞)
The 7 has a bracket because it is included. Infinity always has parenthesis.
With the infinity symbol, always use parenthesis, not square bracket.
4) All numbers less than -5.
Algebra: x < - 5
Interval: (-∞, 5)
Now for your problems.
10.
This is a line. Both the domain and range all all real numbers.
That means the interval is from negative infinity to positive infinity.
(-∞, ∞)
Both the domain and range are that same interval, all real numbers, from negative infinity to positive infinity.
13.
The domain is all real numbers as you can see the x-coordinates extend left forever and right forever. The domain is the same interval as the domain and range of problem 10.
The range is zero and all positive numbers.
You can think of it a all values of y such that y is greater than or equal to zero. Notice that zero is included in the interval.
[0, ∞)
Since zero is included, we use a left bracket, not left parenthesis.
With infinity, we alyways use parentheses, not brackets.