This would be True. For example. If your number is 24, and 'n' is 12 ( a factor of 24 )
your factors of 12 (12, 6, 4, 3, 2, 1) are also included in the factors of 24 (which are 24, 12, 6, 4, 3, 2, 1)
Answer: The first one. 2 to the 20th power over 3 to the 8th power
Step-by-step explanation:
<span> 100 m / 50 s = 2 m/s = 2 *3600 / 1000 = 7.2 k/h
hope it helps :)</span>
Answer: D) Reflection across the y-axis;
counterclockwise rotation about the origin
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall that
tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>)
so cos²(<em>θ</em>) cancels with the cos²(<em>θ</em>) in the tan²(<em>θ</em>) term:
(sin²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall the double angle identity for cosine,
cos(2<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
so the 1 in the denominator also vanishes:
(sin²(<em>θ</em>) - 1) / (2 cos²(<em>θ</em>))
Recall the Pythagorean identity,
cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1
which means
sin²(<em>θ</em>) - 1 = -cos²(<em>θ</em>):
-cos²(<em>θ</em>) / (2 cos²(<em>θ</em>))
Cancel the cos²(<em>θ</em>) terms to end up with
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>)) = -1/2