1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AveGali [126]
3 years ago
5

EMERGENCY PLS HELP: What is the area of the triangle?

Mathematics
2 answers:
Fofino [41]3 years ago
7 0

Answer: The Area of the right triangle is 30(unit of measurement?)

Step-by-step explanation:

To find the area of a right triangle we need to use this formula

A=1/2·base·height

So A=1/2·5·12

Then we get A=1/2·60

So A=30

solmaris [256]3 years ago
6 0

Answer:

A=60

Step-by-step explanation:

A=l*w

A=12*5=60

You might be interested in
If the graph of Rx) = |x| is shifted up 7 units, which equation represents the new graph? OA. g(x) = (x + 7|| O B. g(x) = |x-71
Tju [1.3M]

Answer:

answer B

Step-by-step explanation:

hope this helps

8 0
3 years ago
Can someone please help me with this 7+9x(3+8)=
Semenov [28]

Answer:

99x + 7

hope this helps:)

4 0
3 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
I NEED HELP ASAP IF RIGHT WILL GIVE BRAINLYEST
tensa zangetsu [6.8K]

Answer:

Step-by-step explanation:

c

3 0
3 years ago
Read 2 more answers
Solve for b.
frutty [35]
E. None of the above. -16b = 3, divide both sides by -16, b = -3/16
3 0
3 years ago
Other questions:
  • Line f has a slope of -3. What is the slope of the line that is perpendicular to line f?
    6·1 answer
  • Davis Construction is building a new housing development. They begin by mapping the development out on a coordinate grid. They p
    5·1 answer
  • What is the answer? I find this very confusing for me.
    5·1 answer
  • Willa says the slope of the graph is - 3. What error did
    11·1 answer
  • 36 inches=blank yards​
    7·2 answers
  • If the same number is subtracted from both the numerator and the denominator of 1115, the result is 35. find the number.
    14·1 answer
  • The goal of a toy drive is to donate more than 1000 toys. The toy drive already has collected 300 toys. How many more toys does
    12·1 answer
  • Mr guzman recorded the number of cookies she sold at her bakery each day for one week
    8·1 answer
  • The workers at the help line answers 24 phone calls every 2hours how many phone calls do the workers answer in 8hours
    8·1 answer
  • 2[6+4{m-6(7-n-p)+q}]​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!