An even function can be reflected about the y axis and map onto itself
example: y=x^2
an odd function can be reflected about the origin and map onto itself
example: y=x^3
a simple test is the following
if f(x) is even then f(-x)=f(x)
if f(x) is odd then f(-x)=-f(x)
so
even function
subsitute -x for each and see if we get the same function
remember to fully expand these
g(x)=(x-1)^2+1=x^2-2x+1+1=x^2-2x+2 is the original one
g(x)=(x-1)^2+1
g(-x)=(-x-1)^2+1
g(-x)=(1)(x+1)^2+1
g(-x)=x^2+2x+1+1
g(-x)=x^2+2x+2
not same because the original has -2x
not even
g(x)=2x^2+1
g(-x)=2(-x)^2+1
g(-x)=2x^2+1
same, it's even
g(x)=4x+2
g(-x)=4(-x)+2
g(-x)=-4x+2
not the same, not even
g(x)=2x
g(-x)=2(-x)
g(-x)=-2x
not same, not even
g(x)=2x²+1 is the even function
Answer:
15
Step-by-step explanation:
Answer:
wrong answer.
Right answer: √30 ≈ 5.48
Step-by-step explanation:
The answer for √2 × √15 is not 30, that answer is wrong
√2 × √15 = √2*15 = √30 ≈ 5.48
Hope this help you :3
Answer:
Bag 1: 20
Bag 2: 40
Step-by-step explanation:
Let x be the amount taken out of bag 2
Then the amount left in each bag can be written as:
Bag 1: 50-3x
Bag 2: 50-x
Since we know that half of bag 2 is bag 1, that gives us:
50-3x = 1/2(50-x)
-> 50-3x = 25-x/2
Now lets isolate x and solve:
25 = 5x/2
-> 50 = 5x
-> x = 10
So plug x bag in for the original equations:
Bag 1: 50-3x = 50-3(10) = 20
Bag 2: 50-x = 50-10 = 40