2^2 - 5t + 12 = 0
4 - 5t + 12 = 0
-5t + 16 = 0
-5t = -16
t = 16/5
Answer: 16/5 in fraction form or 3.2 in decimal form
Répondre:
r <27
Explication étape par étape:
Compte tenu de l'inégalité 5r + 9> 10r - 126
Nous devons trouver l'ensemble de solutions
5r + 9> 10r - 126
Ajouter 126 des deux côtés
5r + 9 + 126> 10r - 126 + 126
5r + 135> 10r
5r-10r> -135
-5r> -135
Divisez les deux côtés par -5 (notez que le signe changera)
-5r / -6 <-135 / -5
r <27
Par conséquent, les ensembles de solutions sont des valeurs inférieures à 27
I think the statement given above is false. The variable used to predict changes in the values of another value is not called the response variable. The variable used to predict another variable is called the independent, <span>predictor or </span><span>explanatory variable. Hope this answers the question.</span>
We are NOT told 1) the finance charge and 2) the amount of time
<span>
<span>
19,850.00
<span>
Car Price
+1,488.75 Sales Tax
</span>
<span>
</span><span> -1,000.00
Down Payment
</span>
20,338.75
</span>
</span>
This is the amount being financed
Using a loan calculator http://www.1728.org/calcloan.htm
We see that if the loan is for 9.382% and it is for 5 years,
Then the monthly payment is $425.98
We will make 60 (12 months * 5) monthly payments resulting in a total loan cost of 425.98 * 60 =
<span>
<span>
25,558.80
</span>
</span>
Total Loan Cost
-20,338.75 Money Being Financed
5,220.05 Five Year's Interest
********************************************************************
THIS ISN'T EXACTLY RIGHT - SCROLL TO THE BOTTOM
So, 5,220.05 / 60 = Interest Paid each month.
= $87.00
So,
425.98
-87.00
<span>
<span>
338.98
</span>
</span>
Each month goes toward the principal.
******************************************************************************************
Although, the monthly payment remains exactly the same each month, the amount going toward interest and the amount going to equity (what you own), changes drastically each month.
See the mortgage calculator
http://www.1728.org/mortmnts.htm
So, your first payment, of 452.98 pays for $159.02 in interest and $266.95 in principal.