Given:
The x- intercepts of a parabola are (0,-6) and (0,4).
The parabola crosses the y- axis at -120.
Lucas said that an equation for the parabola is
and that the coordinates of the vertex are (-1, -125).
To find:
Whether Lucas is correct or not.
Solution:
The x- intercepts of a parabola are (0,-6) and (0,4). It means (x+6) and (x-4) are the factors of the equation of the parabola.
...(i)
The parabola crosses the y- axis at -120. It means the equation of the parabola must be true for (0,-120).
![-120=a(0+6)(0-4)](https://tex.z-dn.net/?f=-120%3Da%280%2B6%29%280-4%29)
![-120=a(6)(-4)](https://tex.z-dn.net/?f=-120%3Da%286%29%28-4%29)
![-120=-24a](https://tex.z-dn.net/?f=-120%3D-24a)
Divide both sides by -24.
![\dfrac{-120}{-24}=a](https://tex.z-dn.net/?f=%5Cdfrac%7B-120%7D%7B-24%7D%3Da)
![5=a](https://tex.z-dn.net/?f=5%3Da)
Substituting
in (i), we get
![y=5(x+6)(x-4)](https://tex.z-dn.net/?f=y%3D5%28x%2B6%29%28x-4%29)
![y=5(x^2+6x-4x-24)](https://tex.z-dn.net/?f=y%3D5%28x%5E2%2B6x-4x-24%29)
![y=5(x^2+2x-24)](https://tex.z-dn.net/?f=y%3D5%28x%5E2%2B2x-24%29)
![y=5x^2+10x-120](https://tex.z-dn.net/?f=y%3D5x%5E2%2B10x-120)
So, the equation of the parabola is
.
The vertex of a parabola
is:
![Vertex=\left(-\dfrac{b}{2a},f(-\dfrac{b}{2a})\right)](https://tex.z-dn.net/?f=Vertex%3D%5Cleft%28-%5Cdfrac%7Bb%7D%7B2a%7D%2Cf%28-%5Cdfrac%7Bb%7D%7B2a%7D%29%5Cright%29)
In the equation of the parabola,
.
![-\dfrac{b}{2a}=-\dfrac{10}{2(5)}](https://tex.z-dn.net/?f=-%5Cdfrac%7Bb%7D%7B2a%7D%3D-%5Cdfrac%7B10%7D%7B2%285%29%7D)
![-\dfrac{b}{2a}=-\dfrac{10}{10}](https://tex.z-dn.net/?f=-%5Cdfrac%7Bb%7D%7B2a%7D%3D-%5Cdfrac%7B10%7D%7B10%7D)
![-\dfrac{b}{2a}=-1](https://tex.z-dn.net/?f=-%5Cdfrac%7Bb%7D%7B2a%7D%3D-1)
Putting
in the equation of the parabola, we get
![y=5(-1)^2+10(-1)-120](https://tex.z-dn.net/?f=y%3D5%28-1%29%5E2%2B10%28-1%29-120)
![y=5-10-120](https://tex.z-dn.net/?f=y%3D5-10-120)
![y=-125](https://tex.z-dn.net/?f=y%3D-125)
So, the vertex of the parabola is at point (-1,-125).
Therefore, Lucas is correct.