Answer:
13.9 each sec
Step-by-step explanation:
There are 24hrs in one day and 1,440min in a day, and 86,400sec in a day. 1.2m per day, so 1,200,000/86,400= 13.9
Answer:
1. Objective function is a maximum at (16,0), Z = 4x+4y = 4(16) + 4(0) = 64
2. Objective function is at a maximum at (5,3), Z=3x+2y=3(5)+2(3)=21
Step-by-step explanation:
1. Maximize: P = 4x +4y
Subject to: 2x + y ≤ 20
x + 2y ≤ 16
x, y ≥ 0
Plot the constraints and the objective function Z, or P=4x+4y)
Push the objective function to the limit permitted by the feasible region to find the maximum.
Answer: Objective function is a maximum at (16,0),
Z = 4x+4y = 4(16) + 4(0) = 64
2. Maximize P = 3x + 2y
Subject to x + y ≤ 8
2x + y ≤ 13
x ≥ 0, y ≥ 0
Plot the constraints and the objective function Z, or P=3x+2y.
Push the objective function to the limit in the increase + direction permitted by the feasible region to find the maximum intersection.
Answer: Objective function is at a maximum at (5,3),
Z = 3x+2y = 3(5)+2(3) = 21
(x-12)(x-1) is the answer.
Answer:
I think it's true
Step-by-step explanation:
Answer:
The correct option is;
Substitute x = 0 in the function and solve for f(x)
Step-by-step explanation:
The zeros of a function are the values of x which produces the value of 0 when substituted in the function
It is the point where the curve or line of the function crosses the x-axis
A. Substituting x = 0 will only give the point where the curve or line of the function crosses the y-axis,
Therefore, substituting x = 0 in the function can't be used to find the zero's of a function
B. Plotting a graph of the table of values of the function will indicate the zeros of the function or the point where the function crosses the x-axis
C. The zero product property when applied to the factors of the function equated to zero can be used to find the zeros of a function
d, The quadratic formula can be used to find the zeros of a function when the function is written in the form a·x² + b·x + c = 0