Factor the denominator
x^2+3x-10
(x+5)(x-2)
(x-2)/((x+5)(x-2))
The x-2 in the numerator and denominator cancel out.
Final answer: x+5
Answer:
Area of model pond = 45.6 inch² (Approx.)
Step-by-step explanation:
Given:
Circumference of circular pond = 24 inches
Find:
Area of model pond
Computation:
Circumference of circle = 2πr
Circumference of circular pond = 2πr
24 = 2[22/7][r]
Radius r = [24 x 7] / [2 x 22]
Radius r = 3.81 inch (Approx.)
Area of circle = πr²
Area of model pond = πr²
Area of model pond = (22/7)(3.81)²
Area of model pond = [3.1428][14.5161]
Area of model pond = 45.6 inch² (Approx.)
The equation of the parabolas given will be found as follows:
a] general form of the parabolas is:
y=k(ax^2+bx+c)
taking to points form the first graph say (2,-2) (3,2), thus
y=k(x-2)(x-3)
y=k(x^2-5x+6)
taking another point (-1,5)
5=k((-1)^2-5(-1)+6)
5=k(1+5+6)
5=12k
k=5/12
thus the equation will be:
y=5/12(x^2-5x+6)
b] Using the vertex form of the quadratic equations:
y=a(x-h)^2+k
where (h,k) is the vertex
from the graph, the vertex is hence: (-2,1)
thus the equation will be:
y=a(x+2)^2+1
taking the point say (0,3) and solving for a
3=a(0+2)^2+1
3=4a+1
a=1/2
hence the equation will be:
y=1/2(x+2)^2+1
V = 30*16*12. To find the volume of a rectangular prism, you just multiply the area of the base (side 1 * side 2) by the height of the prism.