Answer:
152
Step-by-step explanation:
12+16=28 so 180 is the total and 180-28=<u>152</u>
<u />
We have the equation:

We know two points and we will use them to calculate the parameters a and b.
The point (0,3) will let us know a, as b^0=1.

Now, we use the point (2, 108/25) to calcualte b:
![\begin{gathered} y=3\cdot b^x \\ \frac{108}{25}=3\cdot b^2 \\ 3\cdot b^2=\frac{108}{25} \\ b^2=\frac{108}{25\cdot3}=\frac{108}{3}\cdot\frac{1}{25}=\frac{36}{25} \\ b=\sqrt[]{\frac{36}{25}} \\ b=\frac{\sqrt[]{36}}{\sqrt[]{25}} \\ b=\frac{6}{5} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20y%3D3%5Ccdot%20b%5Ex%20%5C%5C%20%5Cfrac%7B108%7D%7B25%7D%3D3%5Ccdot%20b%5E2%20%5C%5C%203%5Ccdot%20b%5E2%3D%5Cfrac%7B108%7D%7B25%7D%20%5C%5C%20b%5E2%3D%5Cfrac%7B108%7D%7B25%5Ccdot3%7D%3D%5Cfrac%7B108%7D%7B3%7D%5Ccdot%5Cfrac%7B1%7D%7B25%7D%3D%5Cfrac%7B36%7D%7B25%7D%20%5C%5C%20b%3D%5Csqrt%5B%5D%7B%5Cfrac%7B36%7D%7B25%7D%7D%20%5C%5C%20b%3D%5Cfrac%7B%5Csqrt%5B%5D%7B36%7D%7D%7B%5Csqrt%5B%5D%7B25%7D%7D%20%5C%5C%20b%3D%5Cfrac%7B6%7D%7B5%7D%20%5Cend%7Bgathered%7D)
Then, we can write the equation as:
Step-by-step explanation:
I am not sure this is a square.
this could be a rectangle.
to be safe, I am following that path.
in a rectangle opposite sides are of equal length.
that means
y - 1 = 2y - 7
y = 2y - 6
0 = y - 6
y = 6
3x - 4 = 3y - 13
3x - 4 = 3×6 - 13
3x - 4 = 18 - 13 = 5
3x = 9
x = 3
as it turns out, it is a square, so we could have used every side expression to be equal with every other side expression, but better safe than sorry ...
Answer:
The correct answer should be B.
I hope this helps!
-Mikayla
Simplifying
5(7x + -3) = 230
Reorder the terms:
5(-3 + 7x) = 230
(-3 * 5 + 7x * 5) = 230
(-15 + 35x) = 230
Solving
-15 + 35x = 230
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '15' to each side of the equation.
-15 + 15 + 35x = 230 + 15
Combine like terms: -15 + 15 = 0
0 + 35x = 230 + 15
35x = 230 + 15
Combine like terms: 230 + 15 = 245
35x = 245
Divide each side by '35'.
x = 7
Simplifying
x = 7