Answer:
Mass=0.143 kg
Explanation:
From the Newton's second law of motion the force applied to an object is directly proportional to the acceleration produced and the acceleration is in the direction of the force.
F=ma where F is the force, m is the mass of the object and a i the acceleration.
m=F/a
=4.719N/33 m/s²
=0.143 kg
We can first obtain time of flight from vertical fall
Initial velocity U=0, d = 6 m, a = 9.8 m/s²
d = ut + 1/2 at²
6.0 = 0 + (1/2 × 9.80 t²)
t = √(12/9.8)
= 1.106 sec
Horizontal velocity = Vh = Dh/t
= 24.0 /1.106 s
= 21.69 m/s
The ball was thrown at a speed of 21.69 m/s
W = mg, because you have the weight of the piano and if you just divide it by g that will give you the mass you need. The piano isn't accelerating right now in a way that you'd need to use F = ma.
Answer:
Explanation:
Comment
You have to read this carefully enough that you don't mix up energy and forces.
Gravity is a force. If you don't believe me try jumping off a building. Which way are you going to go and why? Down because gravity attracts your mass.
So Magnetism must be a force as well. It acts in one direction, but not a specific one the way gravity acts). It also either attracts or repulses (pushes an object away)
Answer A
5-a). Acceleration is a vector defined as the rate of change of velocity.
Its magnitude has units of [length/time²]. The SI unit is meter/second².
Its direction is the direction in which velocity is increasing.
5-b). The graph says that the object's speed is not changing.
When we look at any time, from zero to almost 50 minutes, the
object's speed is the same . . . 60 m/s . This will make it easy.
There are 60 seconds in a minute, so 30 minutes = 1,800 seconds.
In every one of those seconds, the object covered 60 meters.
It travelled a total of (60 m/s)·(1,800 s) = 108,000 meters (108 km) .